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1. Results Across Angular Variations

To evaluate the performance of our method under sig-
nificant angular variations, we choose the Objaverse
dataset [2], as it provides a wide range of angular differ-
ences, making it particularly suitable for validating pose es-
timation accuracy. Following prior works [9, 10], we cate-
gorized the geodesic distances between reference and query
poses into multiple groups, where each group represents in-
creasing levels of angular difficulty. As the geodesic dis-
tance increases, the task becomes progressively more chal-
lenging, providing a rigorous benchmark to test the robust-
ness of our approach under extreme conditions.

Figure 1 presents a performance comparison of our
method against DVMNet [10] and 3DAHV [9]. Addition-
ally, the 3DAHV [9] paper provides comparisons with a
broader range of approaches, including 2D correspondence-
based and hypothesis-and-verification-based methods. The
combined results highlight the superior performance of our
method, particularly under significant pose variations. As
angular differences grow, our method’s advantage becomes
increasingly evident—while existing methods suffer no-
table accuracy drops, our approach maintains nearly 90%
accuracy even at large angular ranges. This performance
aligns with our motivation to effectively tackle the chal-
lenges posed by substantial viewpoint differences, demon-
strating superior robustness as the angular variation in-
creases.
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Figure 1. Acc @ 30◦ for different levels of object pose variation
between the reference and query images, measured by geodesic
distance.

2. Per-category Results

The CO3D dataset [6] includes 10 distinct categories.
We present per-category results for these categories, as

well as the overall average performance on the CO3D
dataset. Additionally, we provide per-category results for
the LINEMOD dataset [3]. These results are summarized
in Tables 1 and 2, respectively.

Table 1. Per-category results on CO3D.

Category mAE ↓ Acc@30◦ ↑ Acc@15◦ ↑
Ball 20.26 88.19 68.33
Book 11.80 96.39 88.67
Couch 13.63 93.60 81.80
Frisbee 16.08 88.00 74.40
Hot Dog 16.56 92.86 66.43
Kite 13.56 93.08 82.31
Remote 7.55 100.0 90.40
Sandwich 11.59 94.50 78.50
Skateboard 19.25 93.33 83.33
Suitcase 11.31 95.80 87.80

Mean 14.2 93.6 80.2

Table 2. Per-category results on LineMOD.

Category mAE ↓ Acc@30◦ ↑ Acc@15◦ ↑
Cat 32.83 61.90 30.10
Bench Vise 14.19 96.60 62.40
Cam 30.78 72.60 33.20
Driller 18.77 90.50 53.40
Duck 39.49 59.00 29.80

Mean 27.2 76.2 41.8

3. Details of the Reconstruction Process
The extracted keypoints, represented by their spatial co-
ordinates Xkpt,q ∈ RNkpt×2 and corresponding features
Fkpt,q ∈ RNkpt×C , serve as the input to the image recon-
struction process. This section explains how these key-
points are utilized to reconstruct the query image Iq .

3.1. Keypoint Feature Aggregation
To project the keypoint features Fkpt,q back into a dense
spatial feature map Frecon ∈ RC×H×W , inspired by previ-
ous works [4, 5], we use Gaussian heatmaps Gk(i, j) cen-
tered at each keypoint (xk, yk). The Gaussian heatmaps are
defined as:

Gk(i, j) = exp

(
− (i− xk)

2 + (j − yk)
2

2σ2

)
, (1)
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Figure 2. Visualization of keypoint heatmaps and reconstructed images. The first column shows the original input images, followed by five
heatmaps representing the responses of the image-specific keypoint detectors for each image. The final column shows the reconstructed
images.

where σ controls the spread of each keypoint’s influence.
The aggregated spatial feature at each pixel (i, j) is com-
puted as:

Frecon(i, j) =

Nkpt∑
k=1

Gk(i, j) · Fkpt,q,k

+

1−
Nkpt∑
k=1

Gk(i, j)

 · F̄kpt,q,

(2)

where F̄kpt,q is the mean feature vector across all keypoints,
providing a global context for regions not directly influ-
enced by any specific keypoint.

3.2. Image Reconstruction from Features

The aggregated spatial feature map Frecon is passed through
a decoder to generate the reconstructed image Îq ∈
R3×H′×W ′

. The decoder consists of:
• Multiple upsampling layers to progressively increase spa-

tial resolution.
• Convolutional layers [1] with Instance Normalization [7]

and ReLU activation to refine features.
• A projection layer that maps the features to the RGB

space, followed by a sigmoid activation.

3.3. Effect of the Reconstruction Process
The reconstruction process ensures that keypoints are dis-
tributed across semantically meaningful regions of the ob-
ject. By aggregating local features and incorporating global
context, the reconstructed image retains both local struc-
tural details and global structural consistency. This opti-
mization guarantees that the keypoints effectively capture
the complete structure of the object.

4. More Implementation Details
Here we provide additional implementation details of our
method. We use the transformer-based CroCoNetv2 [8]
backbone, similar to DVMNet [10], as the feature extrac-
tor to obtain image features. The feature interaction mod-
ule contains L = 3 attention blocks, whereas the structure-
aware correspondence estimation module has N = 4 at-
tention blocks. The model dimension C is 768, with each
attention block utilizing 8 heads.

For the loss function, the total loss Ltotal consists of four
components: the 3D keypoint loss Lpts, the reconstruction
loss Lrec, the rotation loss Lrot, and the mask loss Lmask, as
described in the main text. The corresponding weights are
set to λ1 = 2, λ2 = 1, λ3 = 2, and λ4 = 10.

We train the network for 400 epochs, and the batch size
is set to 80 on the CO3D dataset [6]. All experiments are



conducted on 4 RTX 3090 GPUs and an Intel Xeon Gold
6248R @ 4.000 GHz CPU. Our code is implemented using
PyTorch 1.13.0 and CUDA 11.6.

5. More Visualizations
Figure 2 provides additional visualizations. The first col-
umn shows the original input images, followed by five
heatmaps that depict the responses of image-specific key-
point detectors, while the last column presents the recon-
structed images.

In the heatmap columns, the responses from image-
specific keypoint detectors for each query highlight promi-
nent structural elements of the objects. Strong activations
are observed at these key points, indicating that our model
effectively captures semantically and structurally signifi-
cant regions, contributing to a robust understanding of the
object.

The final column shows the reconstructed images, which
demonstrate that our keypoint-based representation effec-
tively captures essential structural features of the objects.
These reconstructions retain key visual elements, validating
the ability of our method to utilize structural information for
accurate relative pose estimation.
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