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Figure 7. The Pipeline of the Template SMPLX++ Reconstruction.

A. Implementation Details

Template Reconstruction. The clothed template SM-
PLX++ plays a vital role in our approach. As shown
in Fig. 7, we create a pipeline to obtain the personalized
parametric template SMPLX++ from multi-view images.
We choose a frame close to T-pose as a reference, provid-
ing more visible details and less sticky geometry and mak-
ing obtaining accurate SMPLX parameters easier. First, we
reconstruct the complete geometry from the multi-view im-
ages using NeuS2 [54]. Then we segment and simplify the
non-body components such as skirt, shoes, and hair, ac-
cording to the method proposed in 4D-Dress [53]. How-
ever these components are not under the standard T-pose
space, we estimate the SMPLX parameters for the refer-
ence frame using existing tools [1, 2], and transform them
back to T-pose space according to the inverse rigid transfor-
mation. Specifically, these skinning weights for non-body
parts can be automatically generated by Robust Skinning
Transfer [3]. Finally, we combine the naked SMPLX with
segmented non-body components to create a personalized
complete model SMPLX++. The parametric template

SMPLX MeshAvatar AnimatableGS Ours (SMPLX++)

Figure 8. Template Comparison.
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Figure 9. Relighting Visualisation.

SMPLX++ can be driven by expression and pose parame-
ters same as the naive SMPLX, which is more expressive
for loose clothing geometry. The template contains roughly
23k vertices and 45k faces, including 20k faces for clothes,
2k faces for hair, and 2k faces for shoes. In contrast to
MeshAvatar [10] and AnimatableGS [34], which learn an
implicit template from scratch, our template preserves a pri-
ori facial expressions and hand gestures as shown in Fig. 8,
which are essential for achieving natural and expressive an-
imations.
Network Architecture. We employ a compact MLP-based
student network to learn the pose-dependent non-rigid de-
formation of mesh:

gi = φ (v̄i)⊕ θ ⊕ zt

∆v̄i = Sc (gi) ·mi + Sb (gi)
(10)

where v̄i ∈ R3 is the i-th vertex coordinate in the canonical
space, θ ∈ R63 is the pose parameter, and zt ∈ R32 is a
learnable embedding for each frame to compensate for in-
accurate pose estimation. The positional encoding function
φ (·) introduced in NeRF [40], is applied with a frequency
band of L = 6 in our experiments. The architecture of the
student network comprises two specialized MLPs. The first
MLP, Sb, models the body’s non-rigid deformations, while
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Model Template Non-rigid Gaussian/Face Num. Quality Controllability Speed
Head Body Head Body Head Body (Inference)

3DGS-Avatar [46] SMPLX MLP 19k 181k low low low low 54
GaussianAvatar [20] SMPLX Unet 45k 146k low low low medium 55

MeshAvatar [10] Mesh (Implicit) StyleUnet 5k 50k low medium low medium 22
AnimatableGS [34] Mesh (Implicit) StyleUnet 18k 246k low high low high 16

Ours (Teacher) SMPLX++ StyleUnet 19k 250k medium high medium high 16
Ours (Student) SMPLX++ MLP+BS 70k 200k high high high high 156

Table 4. Summary about these State-of-the-art Methods of Full-body Avatars.

the second MLP, Sc, captures additional deformations aris-
ing from clothing dynamics. To ensure that clothing defor-
mations are applied exclusively to vertices associated with
clothing, we introduce a mask mi ∈ {0, 1}, where mi = 1
for the vertices belonging to clothing.
Relighting. We ensure that ambient lighting around the per-
former is as uniform and white as possible during capture.
We use the raw rendered image as the base color and apply
shading with new environment light based on the rendered
normal map as shown in Fig. 9. Although this approach is
not physically accurate, it results in better integration with
the environment.
Deployment and 3D Digital Human Agent Pipeline. We
make some efforts for mobile deployment, primarily includ-
ing: a) FP16 quantization for the MLP; b) UInt16 quantiza-
tion for Gaussian sorting; and c) asynchronous inference
techniques, where the animation system operates at 20 FPS
(capture frame rate of training data) while the rendering
system interpolates animations to render at 90 FPS (max-
imum screen refresh rate) on the Apple Vision Pro. Please
note that all these strategies are not applied on RTX4090
in Tab. 1, which can fundamentally demonstrate the perfor-
mance of our method. We develop a 3D digital human agent
on the Apple Vision Pro, which interacts with users through
an ASR-LLM-TTS-Audio2BS pipeline [14, 16, 31, 62] as
shown in Fig. 13. Notably, all models run locally after
deployment. Please stay tuned for future work with more

technical details.
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Figure 11. The Impact of Normal Loss.

Reanimation. We introduce a learnable embedding zt for
each frame to better compensate for misalignment issues
caused by the inaccurate SMPLX [43] estimation and dy-
namic changes that cannot be captured by body pose θ (e.g.,
clothing inertia and swing, changes in hand muscles, etc.).
For offline reanimation, we can utilize the Nonrigid Defor-
mation Baking method introduced in the paper to obtain the
corresponding zt under novel poses from the teacher net-
work. For online real-time body driving, we use the z0 from
the first training frame, which is practically acceptable, al-
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Figure 12. Qualitative Visualization of Baking.

though it compromises the accuracy of non-rigid deforma-
tions.

B. Experiment Details

Metric Evaluation. To quantitatively evaluate the qual-
ity of the rendered images, we choose Peak Signal-to-
Noise Ratio (PSNR), Structure Similarity Index Measure
(SSIM) [55], and Learned Perceptual Image Patch Similar-
ity (LPIPS) [64]. In our experiments, we evaluate masked
images at a resolution of 1500 × 2000, where the masks
are provided by BiRefNet [67]. It is important to note
that while PSNR and SSIM are highly sensitive to pixel
misalignment, LPIPS demonstrates greater robustness by
computing differences in deep feature maps. As illustrated
in Fig. 15, the teacher network delivers superior full-body
clothing details (better LPIPS scores), while the student net-
work excels in the face region due to a more plausible Gaus-
sian distribution. This discrepancy primarily arises from
background residuals introduced by the segmentation net-
work [67] and the teacher network’s propensity to omit fine
details, such as fragmented hair strands. Additionally, we

crop the face region for evaluation based on the projection
of the head bounding box. We also adopt point-to-surface
distance (P2S) and Chamfer distance (Chamfer) to evalu-
ate the geometry, while the ground truth mesh is generated
from NeuS2 [54].

C. Additional Discussion

Discussion w.r.t AnimatableGS. In our teacher-student
framework, we utilize AnimatableGS [34] as the teacher
network due to its robust capability to model complex pose-
dependent non-rigid deformations. Unlike the original An-
imatableGS [34], which learns an implicit template from
scratch, we adopt the SMPLX++ model as our predefined
template. We input semantic positional maps into Style-
Unet [52] by assigning distinct color labels to each compo-
nent (e.g., red for clothing, yellow for hair) and combining
these labels with the posed coordinates to generate the fi-
nal vertex colors. This strategy can provide better seman-
tic information about segmentation for the teacher network.
Additionally, we incorporate a normal loss Lnor during the
training of the teacher network, which contributes to the
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Figure 14. Ablation Study on Semantic Loss during Baking.

learning of smoother geometries.
Summary about Full-body Avatars. We present a com-
parative summary of full-body avatar methods in Tab. 4.
3DGS-Avatar [46] and GaussianAvatar [20] utilize the ba-
sic naked SMPLX model as their template, resulting in
poor rendering quality for loose clothing. MeshAvatar [10]
and AnimatableGS [34] develop implicit clothed templates
from scratch which compromising the control over facial
expressions and hand gestures. Regarding non-rigid de-
formation modeling, StyleUnet exhibits more robust ex-
pressive capabilities than MLP and Unet, as discussed in
AnimatableGS [34]. Our method employs an MLP-based
student network baked from the teacher network and two
lightweight learnable blend shape compensations. This
design enables high-performance rendering with minimal
quality degradation. Notably, while maintaining the same
number of Gaussians as the teacher model, we allocate more
Gaussians to the face to achieve higher facial sharpness as
shown in Fig. 17. In contrast, AnimatableGS [34] limits
the number of Gaussians on the face due to the resolution
constraints of the rendered positional maps.
The Non-rigid Loss and Semantic Loss during Baking.

During the non-rigid deformation baking process, both the
non-rigid loss Lnon and the semantic loss Lsem play crucial
roles. For the non-rigid deformation loss Lnon, we directly
use the Gaussian non-rigid deformation maps {∆Uf ,∆Ub}
generated by the teacher network to directly supervise the
mesh non-rigid deformation maps {∆Vf ,∆Vb} of the stu-
dent network under T-pose in the canonical space. Regard-
ing the semantic loss Lsem, we construct a semantic label
ei = ci + sin (τ v̄i) for each vertex of the template, where
τ is a scale factor is designed to increase the frequency
of positional changes, inspired by the position embedding
in NeRF [40]. As illustrated in Fig. 14, the semantic loss
Lsem helps mitigate the intersection between clothing and
the body. We provide visualizations of the products from
the baking process of different identities in Fig. 12. The
teacher network effectively guides learning mesh non-rigid
deformation of the student network, resulting in geometry
that is well-aligned with the performer’s surface as shown
in Fig. 12 (Mesh (w/o Non.) vs. Mesh (w Non.)). With-
out the help of the baking process, it isn’t easy to decouple
geometry and appearance.

The Impact of Normal Loss. Similar to most 3D
Gaussian-based methods [28, 35], we define the direction
of the Gaussian’s shortest axis as its normal. In contrast
to other approaches that dynamically determine the normal
orientation based on the camera position, we assign a fixed
normal n = [1, 0, 0] and scaling s = [ϵ, 1, 1] in the local
space for each Gaussian, where ϵ = 0.01 is a minimum
to make the Gaussian as thin as possible. Upon transform-
ing its parent triangle, the Gaussian’s normal in world space
aligns with the triangle’s normal. To promote smoother ren-
dered normal maps, we introduce a normal loss Lnor as il-
lustrated in Fig. 11. The ground truth normal maps are ob-
tained from NeuS2 [54]. Additionally, the rendered normal
maps facilitate image-based relighting, as demonstrated in
the provided video demo.
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Figure 15. Qualitative Comparison of Details.

D. Failure Cases
Although TaoAvatar demonstrates remarkable performance
in full-body talking tasks, it still faces challenges in han-
dling complex motions and exaggerated outfits. Specif-
ically, when the teacher network struggles to accu-
rately model loose garments under intricate motions (e.g.,
dancing-induced skirt motions), the task becomes increas-
ingly difficult for the student network as shown in Fig. 16.
Moreover, TaoAvatar is highly reliant on the precision of
SMPLX parameters and is susceptible to artifacts when the
estimated SMPLX fails to align with the image properly.

Ours (Teacher) Ours (Student) Ours (Teacher) Ours (Student)

Figure 16. Failure Cases.
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Figure 17. Qualitative Comparisons on Exaggerated Expression.


	Implementation Details
	Experiment Details
	Additional Discussion
	Failure Cases

