
Temporal Action Detection Model Compression by Progressive Block Drop

Supplementary Material

In the supplementary material, we provide more details
and more experimental results of our work. We organize the
supplementary into the following sections.
• In Section A, we provide a detailed description of the hy-

perparameter settings used in our experiments.
• In Section B, we present detailed results on which layers

are dropped at each iteration using the block drop method.
• In Section C, we employ the DETAD tool to conduct a

comprehensive analysis of model performance across a
broader range of metrics.

• In Section D, we investigate the data stability of our
method through repeated experiments.

• In Section E, we explore the compatibility of the block
drop method with sparse activations.

• In Section F, we further validate the effectiveness of our
method through five ablation experiments.

A. Implementation Details
We use PyTorch 2.3.1 and 4 A800 GPUs for our experi-
ments. The learning rate of LoRA is grid-searched within
the range of 1e-5 to 1e-3, while the parameters of the other
backbone components remain frozen. The hidden layer di-
mension of LoRA is fixed at one-quarter of the input di-
mension of the attention block. Other experimental details
follow those described in [3].

B. Detailed Results of the Dropped Blocks
As discussed in Section 5.3, we applied our method to the
THUMOS14 and ActivityNet-1.3 datasets. Here, we pro-
vide more detailed experimental results and configurations,
including the specific blocks removed from each layer and
the learning rate settings. As shown in Table A, the dropped
blocks vary across models, demonstrating that the block
drop selection evaluator can flexibly adapt to the charac-
teristics of each model when selecting blocks to remove.

C. Quantitative Analysis with DETAD [1]
In order to assess the impact of our progressive block drop
on detection performance, we conducted a detailed quanti-
tative analysis of the pruned model using the DETAD [1].
Our analysis focuses on the false positive predictions before
and after compression. As illustrated in Figure A, prun-
ing notably improves localization, reducing the combined
background and localization errors from 6.2+4.3 to 4.9+4.5.
However, this improvement comes at the expense of clas-
sification accuracy, with the classification error increasing
from 0.7 to 1.1.

Table A. The detailed dropped blocks for the experiments
in Section 5.3. The dropped blocks vary across different
models, indicating that our method is capable of adapting
to the specific characteristics of each model.

Dataset Backbone Drop Blocks

THUMOS14

VideoMAE-S

[7]
[7,10]

[7,10,6]
[7,10,6,3]

VideoMAE-L

[20]
[20,1]

[20,1,4]
[20,1,4,7]

[20,1,4,7,6]
[20,1,4,7,6,2]

ActivityNet-1.3 VideoMAE-S

[6]
[6,3]

[6,3,8]
[6,3,8,11]

Background Err

Confusion Err

Localization Err

Wrong Label Err

 Double Detection Err

False Positive Analysis

7

6

5

4

3

2

1
0

A
ve

ra
ge

-m
A

P N
Im

pr
ov

m
en

t(
%

)

0.6 0.7

6.2

0.5

4.3

0.8 1.1

4.9

0.7

4.5

Uncompressed Pruned

Figure A. Quantitative analysis between uncompressed and
pruned model. The pruned model enhances localization per-
formance while diminishing classification performance.

Furthermore, we used the DETAD tool to examine false
negative predictions based on three metrics: 1) Cover-
age: The proportion of an instance’s duration relative to
the video’s total duration, divided into five categories. 2)
Length: The duration of an instance in seconds, catego-
rized into five groups from short to extra-long. 3) Num-
ber of Instances: The total count of same-class instances
within a video, grouped into four categories. As shown in
Figure B, the model with progressive block drop improved
the detection of long-duration actions, reducing omission
rates for actions with XL coverage from 8.9% to 6.7% and
for XL length from 13.5% to 10.8%. This demonstrates
the potential of our compression method in analyzing long-
duration actions.

0
20
40
60
80

100

Fa
ls

e
N

eg
at

iv
e

(%
)

3.4 3.8 7.8 6.6 8.9 5.1 1.6 3.3

Coverage

4.4
13.5

Length

6.7 5.2 1.2 1.7

Instances

XS S M L XL XS S M L XL XS S M L

100
80
60
40
20

0
4.5 4.0 9.0 6.6 6.7 6.5 1.9 3.8 3.5 10.8 6.7 6.1 1.9 2.2

Uncompressed

Pruned

XS S M L XL XS S M L XL XS S M L

Figure B. Comparison of false negative analysis between
uncompressed and pruned models.

D. Standard deviation of Results.
To compare the performance stability of our progressive
block drop method with the random block drop approach.
We conduct the experiment using three different random
seeds to evaluate the performance of both methods: (1)
the baseline approach where blocks are randomly dropped
all at once, and (2) our progressive block drop method.
The evaluation is performed on two datasets: THUMOS14
and ActivityNet-1.3. The experimental results are summa-
rized in Table B. On THUMOS14, our method achieves a
mean accuracy of 70.57% (±0.18), while randomly drop-
ping blocks results in lower accuracy (69.06% and 68.41%).
On ActivityNet-1.3, our method shows a slight improve-
ment, with an accuracy of 37.74% (±0.03), compared to
37.57% for the random drop approach. This confirms the
statistical significance and robustness of our method.

Table B. Comparison between ours and randomly drop-
ping blocks. The results show that our method consistently
achieves higher accuracy and more stable performance.

Drop Blocks ID [2,5,9] [0,4,7] Ours
THUMOS14 68.41 (±0.06) 69.06 (±0.01) 70.57 (±0.18)

ActivityNet-1.3 37.57 (±0.08) 37.57 (±0.01) 37.74 (±0.03)

E. Combined with Sparse Activations.
Activation sparsity is another promising approach for
achieving model acceleration [2]. In theory, it leverages the
high density of zero values to accelerate subsequent com-
putations by using sparse matrices. Given a model com-
pressed using our method, we replace the GeLU activa-
tion function in each block with the ReLU function, fol-
lowing [4]. We then conduct experiments by fine-tuning
this model using the alignment training method described
in Section 4.2. As shown in Table C, after replacing the ac-
tivation functions in all blocks with ReLU, the performance
changed from 70.47% to 70.38%, which is essentially un-

Table C. Results of our compatibility with sparse activation-
based acceleration methods. Our pruned model can be fur-
ther accelerated by sparse activation.

Model Ours Ours + Sparse Activation
mAP 70.47 70.38

Sparsity 0.18% 83.42%

Table D. Comparison of three metrics in the block drop se-
lection evaluator. Training loss and mAP benefits more on
block selection.

Dataset Uncompressed Drop Metric
Train Loss mAP MSE

THUMOS14 70.43 70.88 70.47 69.37
ActivityNet-1.3 37.75 37.71 37.77 37.25

changed, while the activation sparsity increased from 0.18%
to 83.42%. Therefore, it is entirely feasible to further ac-
celerate the model’s inference speed by combining special-
ized hardware and sparse matrix computation algorithms.
This also demonstrates the strong scalability of our pro-
posed progressive block drop method.

F. Ablation Studies

F.1. Different Choices of Block Drop Criteria
We compare different importance metrics to select which
blocks to drop. We employed three metrics: 1) Train Loss:
the average loss over all data when training the subnet after
dropping blocks. 2) MSE: perform inference on the train-
ing set and compute the feature differences before and after
each block. The average MSE over all input data is used
as the evaluation metric. 3) mAP: performance of the sub-
net evaluated on the training set. From Table D, when us-
ing mAP to select blocks to drop, the performance on both
datasets surpasses that of the uncompressed model (at least
↑ 0.02%). While the train loss metric does not exceed the
uncompressed model on the ActivityNet-1.3 dataset, it is
relatively close (↓ 0.04%) and can outperform the uncom-
pressed model on the THUMOS14 dataset. However, MSE
performs worse on both datasets (at least ↓ 0.50%). There-
fore, we choose mAP as the evaluation metric due to its
more stable performance across different datasets.

F.2. Ablation on the Effect of Fine-Tuning After
Block Dropping

Our experiments underscore the critical importance of fine-
tuning following block dropping. In our ablation studies,
as illustrated in Table E, pruning three blocks without any
fine-tuning led to a marked decline in mAP (↓ 5.14%). In
contrast, when fine-tuning was applied, the mAP was ef-
fectively restored to 70.47%. This recovery highlights that
fine-tuning is essential to bridge the domain gap between
the pre-trained model and the target TAD dataset, thereby

Table E. Effect of fine-tuning (FT) after block dropping. FT
after block pruning is essential for restoring performance.

Drop #Block Baseline 1 2 3
without FT 70.43 69.21 (↓ 1.22) 67.13 (↓ 3.30) 65.29 (↓ 5.14)

with FT 70.43 71.06 (↑ 0.63) 71.37 (↑ 0.94) 70.47 (↑ 0.04)

Table F. Comparison between LoRA and full fine-tuning.
Param refers to the trainable parameters within the back-
bone. The use of LoRA technology can effectively reduce
computational costs while benefiting model performance.

Drop #Block
Full Fine-tuning LoRA
mAP Param (M) mAP Param (M)

Baseline 70.43 20.86 70.43 3.11
1 70.67 (↑ 0.24) 19.17 71.06 (↑ 0.63) 2.90
2 70.75 (↑ 0.32) 17.48 71.37 (↑ 0.94) 2.68
3 70.42 (↓ 0.01) 15.79 70.47 (↑ 0.04) 2.47

mitigating the adverse effects of structural modifications.

F.3. Ablation on the Impact of LoRA
To further enhance the adaptation process while reducing
computational overhead, we integrate Low-Rank Adapta-
tion (LoRA) into our fine-tuning strategy. As presented
in Table F, the incorporation of LoRA achieves compa-
rable—and in some cases superior—accuracy relative to
full fine-tuning, yet requires significantly fewer trainable
parameters. For example, when pruning two blocks, the
LoRA-augmented approach attained an mAP improvement
of 0.94% with only 2.68M tunable parameters, in contrast
to 17.48M when employing full fine-tuning. These results
validate that LoRA not only minimizes the computational
cost of fine-tuning but also contributes positively to perfor-
mance, confirming its practical utility in our framework.

F.4. Ablation on Selective Fine-Tuning
We further explored the efficiency of our adaptation strategy
by freezing the detection head and all network components
except the LoRA modules within the backbone. This ap-
proach resulted in a modest mAP decrease of 1.57% (from
70.47% to 68.90%) when three blocks were pruned. Al-
though selective fine-tuning of only the LoRA blocks con-
siderably reduces the number of trainable parameters, the
performance drop suggests that jointly fine-tuning both the
backbone and the detection head is preferable for optimal
performance recovery. These findings indicate that while
freezing the detection head can offer additional compu-
tational savings, a comprehensive fine-tuning strategy re-
mains essential to fully recover the performance.

F.5. Ablation on Loss Functions for Alignment
To investigate the effect of different alignment losses on the
performance recovery, we design several ablation experi-
ments: 1) no alignment loss; 2) action recognition and lo-

Table G. Ablation on different alignment losses on THU-
MOS14. The combination of both alignment losses yields
the best result.

Alignment Level
Feature ✓ ✓

Prediction ✓ ✓
mAP (tIoU=0.5) 69.25 70.23 70.39 70.47

calization alignment; 3) cross-depth feature alignment.
The experimental results in Table G, demonstrate that the
best performance is achieved when both alignment tech-
niques are used simultaneously. This indicates that com-
bining these two losses more effectively guides the model
to learn in a way that is closer to the uncompressed model.

References
[1] Humam Alwassel, Fabian Caba Heilbron, Victor Escorcia,

and Bernard Ghanem. Diagnosing error in temporal action
detectors. In Proceedings of the European conference on com-
puter vision (ECCV), pages 256–272, 2018. 1

[2] Mark Kurtz, Justin Kopinsky, Rati Gelashvili, Alexander
Matveev, John Carr, Michael Goin, William Leiserson, Sage
Moore, Nir Shavit, and Dan Alistarh. Inducing and exploiting
activation sparsity for fast inference on deep neural networks.
In International Conference on Machine Learning (ICML),
pages 5533–5543. PMLR, 2020. 2

[3] Shuming Liu, Chen-Lin Zhang, Chen Zhao, and Bernard
Ghanem. End-to-end temporal action detection with 1b pa-
rameters across 1000 frames. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 18591–18601, 2024. 1

[4] Seyed Iman Mirzadeh, Keivan Alizadeh-Vahid, Sachin Mehta,
Carlo C del Mundo, Oncel Tuzel, Golnoosh Samei, Moham-
mad Rastegari, and Mehrdad Farajtabar. Relu strikes back:
Exploiting activation sparsity in large language models. In
The Twelfth International Conference on Learning Represen-
tations (ICLR), 2024. 2

	Implementation Details
	Detailed Results of the Dropped Blocks
	Quantitative Analysis with DETAD alwassel2018diagnosing
	Standard deviation of Results.
	Combined with Sparse Activations.
	Ablation Studies
	Different Choices of Block Drop Criteria
	Ablation on the Effect of Fine-Tuning After Block Dropping
	Ablation on the Impact of LoRA
	Ablation on Selective Fine-Tuning
	Ablation on Loss Functions for Alignment

