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6. More Details of Experiments
In our experiments, we utilize 3 datasets: 8KDehaze,

4KID, and O-HAZE. The 4KID dataset includes 3 subsets:

Daytime, Night, and Realtime. For consistency with the

other datasets, we select the Daytime subset for training and

testing. Since both the 4KID and O-HAZE datasets do not

provide pre-split training and test sets, we randomly select

500 samples from the 4KID dataset and 5 samples from the

O-HAZE dataset as the test set. The remaining images from

these datasets are used for training. To further enhance the

generalization capability of the model, we apply random ro-

tations to the input images during training, ensuring greater

variability and robustness in the model’s performance.

7. More Details of the 8KDehaze dataset
To the best of our knowledge, the proposed 8KDehaze

dataset is the first ultra-high-resolution dataset in the field

of image dehazing. It consists of 9,000 training pairs and

1,000 test pairs, each with a resolution of 8192 × 8192 pix-

els. This dataset offers a valuable resource for advancing

large image inference in the dehazing domain. In this sec-

tion, we provide a detailed description of the dataset’s key

features and discuss its potential impact on the development

of dehazing algorithms.

Geographical Diversity. The 8KDehaze dataset encom-

passes a wide range of geographical environments, ensur-

ing a comprehensive representation of real-world scenar-

ios. As shown in Figure 9, the images are sourced from

diverse regions, including desert, inland waters, urban ar-

eas, rural landscapes, forest, coastlines, and mountainous

terrains. This geographical diversity enables the dataset to

capture the various ways in which haze manifests across dif-

ferent topographies and ecosystems. The distribution of im-

ages across these categories is uniform, ensuring that mod-

els trained on the 8KDehaze dataset can generalize well to

different types of scenes in practical applications.

Seasonal Variation. Another key aspect of the 8KDehaze
dataset is its seasonal variation. The dataset includes im-

ages captured in all four seasons: spring, summer, autumn,

and winter. Figure 10 presents some representative sam-

ples from each season. These seasonal differences present

unique challenges for dehazing algorithms. For example,

models may struggle to differentiate between snow-covered

ground and haze, as both can appear similarly gray or white.

Additionally, the varying vegetation and atmospheric condi-

tions across seasons require models to adapt to diverse en-

vironmental conditions. The inclusion of seasonal variation

in the 8KDehaze dataset is essential for developing robust

dehazing algorithms capable of generalizing across differ-

ent times of the year.

Haze Distribution. The 8KDehaze dataset contains im-

ages with diverse haze characteristics. Figure 11 presents

the haze distribution across the dataset, including varying

coverage areas and haze intensities. Unlike conventional

images captured from a ground-level perspective, aerial im-

ages often exhibit irregular and random haze patterns. This

non-uniform haze distribution poses significant challenges

for dehazing algorithms, as it requires models to effectively

utilize global image information and adapt to a wide range

of unpredictable haze patterns. Given that most existing de-

hazing methods primarily address uniform haze in small

image patches, the 8KDehaze dataset’s large-sized, non-

uniform haze distributions offer new opportunities for ad-

vancing the field of image dehazing.

Dataset Availability. We provide two versions of the

dataset: a full version for training and evaluation, and a

mini version for debugging. Both the full dataset and the

mini version are publicly available at https://github.
com/CastleChen339/DehazeXL.

8. Performance of CNN Backbone Models
As stated in Section Methodology, the proposed De-

hazeXL uses Swin Transformer [29] as the backbone for

both the Encoder and Decoder. Given the advancements

made by CNN-based backbones in the dehazing domain,

we conduct additional experiments in this section using sev-

eral CNN-based backbones for both the Encoder and De-

coder. We select the following CNN-based architectures

for comparison: VGG-19 [39], ResNet-50 [19], DenseNet-

201 [21], and EfficientNet-B4 [44]. The models were

trained and evaluated on the 8KDehaze, 4KID, and O-
HAZE datasets under the same experimental settings as De-

hazeXL. The quantitative results are summarized in Table 4

to 6.

The results indicate that models using CNN-based archi-

tectures as both Encoder and Decoder achieve competitive

performance in terms of PSNR and SSIM, demonstrating

the general applicability of the proposed framework. How-

ever, models based on Swin Transformer as the backbone

outperform these CNN-based models. This superior per-

formance underscores the advantages of Transformer-based

Encoder-Decoder architectures, which are more effective at

capturing long-range dependencies compared to traditional
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Figure 9. Geographic Diversity of the 8KDehaze Dataset. The samples in the 8KDehaze dataset cover seven distinct terrain types: desert,

inland waters, urban areas, rural areas, forest, coast, and mountain areas.
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Figure 10. Seasonal Variation in the 8KDehaze Dataset. Samples can be categorized into 4 seasons: spring, summer, autumn, and winter.

Table 4. Performance comparison of different backbones on the

8KDehaze dataset in terms of PSNR and SSIM

Model Backbone PSNR SSIM
VGG-19 27.15 0.9389

ResNet-50 28.18 0.9583

DenseNet-201 29.49 0.9620

EfficientNet-B4 30.15 0.9746

Swin-T (DehazeXL) 32.35 0.9863

CNN architectures. These capabilities make Transformer-

based models better suited for image dehazing tasks. There-

fore, we choose Swin Transformer as the default encoder

and decoder backbone for DehazeXL. Notably, our method

achieves state-of-the-art performance without any modifi-

cations to the original Swin Transformer, further validating

the potential of the proposed framework.

Table 5. Performance comparison of different backbones on the

4KID dataset in terms of PSNR and SSIM

Model Backbone PSNR SSIM
VGG-19 23.17 0.8782

ResNet-50 24.20 0.8903

DenseNet-201 24.81 0.8892

EfficientNet-B4 25.17 0.8946

Swin-T (DehazeXL) 26.62 0.9073

9. Additional Visual Results
In this section, we present additional visual results to fur-

ther highlight the effectiveness of the proposed DehazeXL

model for large image dehazing. Figure 12 illustrates the

comparative results of all methods on the 8KDehaze, 4KID,

and O-HAZE datasets. Figure 13 showcases the attribution

maps for DehazeXL’s dehazed results using the proposed
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Figure 11. Haze Distribution in the 8KDehaze Dataset. The x-axis represents the haze coverage area, ranging from no coverage to full

coverage, while the y-axis indicates the haze intensity, spanning from low to high.

Table 6. Performance comparison of different backbones on the

O-HAZE dataset in terms of PSNR and SSIM

Model Backbone PSNR SSIM
VGG-19 19.95 0.7056

ResNet-50 20.62 0.7184

DenseNet-201 20.88 0.7215

EfficientNet-B4 21.06 0.7330

Swin-T (DehazeXL) 21.49 0.7348

DAM. It offers insight into the specific contributions of each

pixel to the dehazed results in the specified region. The

source code of DAM is available at https://github.
com/fengyanzi/DehazingAttributionMap.
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Figure 12. Comparisons of dehazed results on the 8KDehaze, 4KID, and O-HAZE datasets.



(a) Inputs (b) Dehazed Results (c) Attribution Maps

Figure 13. Attribution maps for DehazeXL’s dehazed results using the proposed DAM method. The red box on (a) indicate the regions

of interest for attribution. In the attribution maps, the color intensity corresponds to the degree of influence on the dehazed results, with

warmer colors (e.g., red) indicating higher influence and cooler colors (e.g., blue) indicating lower influence.


