
UltraFusion: Ultra High Dynamic Imaging using Exposure Fusion

Supplementary Material

-6 EV -3 EV 0 EV +3 EV

Figure A1. An example of 9-stops scenes.
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Figure A2. Detailed process of training FCB.

A. Why We Need Handle 9-Stops?

Some challenging night-time scenes require up to 9 stops
of exposure difference to cover the full dynamic range. As
shown in Fig. A1, we need -6 EV to capture highlights (red
box) and +3 EV (green box) to capture dark details.

B. Training process of Fidelity Control Branch

To better illustrate how fidelity control branch is imple-
mented, we show its training process in Fig. A2. Unlike
the inference stage of our UltraFusion, the input of the VAE
during FCB training is the ground truth. Our goal is to en-
able FCB to learn features that assist VAE decoding through
shortcuts.

C. Evluation Details

In RealHDRV [39] dataset, the HDR ground truth corre-
sponds to the 0 EV input. However, many 0 EV images in
RealHDRV [39] dataset only contain few over-exposed re-
gions need to be recovered. To better demonstrate ultra high
dynamic imaging performance of various methods, we ex-
tract LDR image of 2 EV or 3 EV (according to the under-
exposed input is -2 EV or -3 EV) from HDR groundtruth
as over-exposed input, by reversing the process adopted to
fuse the HDR groundtruth. Finally, after our augmentation,
the RealHDRV [39] dataset contains 50 paired under/oever-
exposed inputs with 4 or 6 stops.
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Figure A3. Illustrating the effectiveness of leveraging the similar
architecture as decompose-and-fuse control branch in fidelity con-
trol branch.

D. Ablation Study on Fidelity Control Branch

As shown in Fig. A3, the fidelity control branch effectively
preserves the faithful structure of inputs. However, sim-
ply using two RGB images as inputs leads to some texture
loss, as shown in Fig. A3(c). We demonstrate in Fig. A3(d)
that by adopting similar architecture as decompose-and-
fuse control branch (DCFB), more high-frequency details
are retained and the overall visual quality is enhanced.

E. Cross Attention Architecture

We utilize cross attention in the decompose-and-fuse con-
trol branch to fuse features from different modalities. The
structure of the cross attention module is illustrated in
Fig. A4. The cross attention module accepts three inputs,
i.e., overexposed image feature Xoe → RH→W→C , short-
exposed structural features XS

ue
→ RH→W→C , and short-

exposed color features XC

ue
→ RH→W→C . First, we con-

catenate XS

ue
and XC

ue
and apply an 1 ↑ 1 convolution to

adjust channel dimension back to C, obtaining the under ex-
posure feature Xue. Subsequently, LayerNorm is separately
applied to Xoe and Xue, followed by 3↑ 3 depth-wise con-
volutions to produce the corresponding Q, K and V . Next,
we perform attention operations on obtained Q, K and V .
After reshaping the output of attention operation, we input
it to another 1 ↑ 1 convolution layer and add the result to
Xoe to produce output condition feature Xout. The whole
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Over Exposure Image Feature 𝑋𝑋𝑜𝑜𝑜𝑜
𝐻𝐻 ×𝑊𝑊 × 𝐶𝐶

Under Exposure Structure Feature 𝑋𝑋𝑢𝑢𝑜𝑜𝑆𝑆
𝐻𝐻 ×𝑊𝑊 × 𝐶𝐶

Under Exposure Color Feature 𝑋𝑋𝑢𝑢𝑜𝑜𝐶𝐶
𝐻𝐻 ×𝑊𝑊 × 𝐶𝐶

𝐻𝐻𝑊𝑊 × 𝐶𝐶
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Output Condition Feature 𝑋𝑋𝑜𝑜𝑢𝑢𝑜𝑜
𝐻𝐻 ×𝑊𝑊 × 𝐶𝐶
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Figure A4. Detailed architecture of cross attention.
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Figure A5. Visual comparison with SCTNet [44] on Kalantari’s
dataset [15]. Our framework can be extended to 3 exposures flex-
ibly.

process can be summarized as follows:

Xout = Xoe + Conv1→1(V Softmax(
QTK

ω
)), (A1)

where ω is a learnable scaling factor.

F. Extend to 3 Exposures

Our UltraFusion is focus on 2 exposures as it already gen-
erates very good results and reduces the user’s capture bur-
den. Extending to 3 exposures is straightforward. We use
the normal-exposed image as the reference and process it
similarly. For the other two exposures, we extract guided
features using the guidance extractor, then use normalized
summation of them as input to the cross attention module.
In the 3-exposure setup, we train UltraFusion on Kalantari’s
dataset [15] according to conventional settings and test on
the corresponding test set. The comparison is performed
with officially released state-of-the-art HDR reconstruction
methods. The qualitative results are shown in Fig. A5, re-
spectively.

G. Effectiveness of Pre-Alignment

To conduct a more fair comparison, we also pre-align the
test set and summarize the performance of each compet-
ing method in Tab. A1. Our UltraFusion still achieves the
state-of-the-art performance. The consistent performance
improvement of each method also demonstrates that the pre-
alignment module is reasonable.

Table A1. Quantitative comparisons on RealHDRV [39] dataset.

Type Method RealHDRV
TMQI↓ MUSIQ↓ PAQ2PIQ↓ HyperIQA↓

HDR Rec.
HDR-Transformer 0.8710 63.30 70.99 0.5197

SCTNet 0.8758 63.48 71.22 0.5222
SAFNet 0.8789 62.88 70.91 0.5091

MEF
Defusion 0.8275 57.87 69.73 0.4974
MEFLUT 0.8505 62.85 70.93 0.5073

HSDS-MEF 0.8690 63.43 72.53 0.5272

Ours UltraFusion 0.8925 67.51 73.40 0.5833

OursTC-MoAInputs SSIM Map of TC-MoA SSIM Map of Ours

Figure A6. Comparing MEF-SSIM map with TC-MoA [69].

H. Discussion on MEF-SSIM

MEF-SSIM is a widely used metric to evaluate fidelity
after exposure fusion. However, sometimes lower MEF-
SSIM does not indicate poor fidelity. As shown in Fig. A6,
in brighter areas, ours UltraFusion achieves higher MEF-
SSIM than TC-MoA, demonstrating high fidelity. In dark
areas, it makes some necessary local adjustments, resulting
in more natural transitions but lower MEF-SSIM.

I. Compare with Inapinting Methods

To further illustrate our UltraFusion is the first guided in-
painting model that can perform artifact-free HDR imag-
ing, we compare our method with two diffusion-based im-
age editing methods: Anydoor [4] and Stable Diffusion V2
Inpainting [37].
Anydoor. We compare our UltraFusion with an image cus-
tomization method Anydoor [4]. Given a background im-
age, a corresponding mask, and a reference image, Any-
Door can inpaint the reference into the masked region of
the background image. Therefore, we utilize the over-
exposed image as the background, mask out the over-
exposed regions, and provide the contemporary regions
from the under-exposed image as the reference. As shown
in Fig. A7 (b), while AnyDoor can restore the highlight
regions, the restored results fail to maintain consistency
with the under-exposed image. Different from Anydoor,
our UltraFusion effectively leverages the information from
the under-exposed image, achieving a more reliable restora-
tion.
Stable Diffusion Inpainting. Since Stable Diffusion V2
Inpainting [37] lacks the ability to fuse differently exposed
inputs, we first obtain an initial fused result through a
pre-alignment stage and our baseline model (i.e., Control-
Net [65]), as shown in Fig. A8 (d). Then, we use the esti-
mated occlusion mask (Fig. A8 (c)) as the inpainting mask
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Figure A7. Compre with an image customization method Any-
door [4]. Our method can preserve high-frequency details from
the under-exposed image.
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Figure A8. Visual comparisons with an inpainting method. We
adopt Stable Diffusion V2 Inpainting [37] for comparison. All the
inputs are resized to 512→512 to meet the size requirement of the
inpainting model.

for Stable Diffusion Inpainting to inpaint the occluded re-
gions. It can be observed from Fig. A8 (e) that, although
the artifact effect is mitigated, due to the absence of partial
under-exposed information as guidance, the result from Sta-
ble Diffusion Inpainting fails to maintain consistency with
the under-exposed image. Moreover, since Stable Diffu-
sion Inpainting is not trained on our designed synthetic data,
it is not robust to align errors, leading to further distortion
in well-exposed regions. Finally, without a fidelity control
branch, the overall structure of the image undergoes signif-
icant deformation. In contrast, our UltraFusion is able to
generate a faithful and artifact-free output (Fig. A8 (f)).

J. Addtional Visual Comparisons

We provide additional visual comparisons on three datasets
(i.e., our UltraFusion benchmark, RealHDRV dataset [39]
and MEFB dataset [66]). Please refer to our project page.

For our benchmark, we present the results of our Ultra-
Fusion and competitors on 20 scenes used for the user study.

For the RealHDRV dataset, we selected 10 scenes with sig-
nificant local motion. For the MEFB dataset, we randomly
selected 10 scenes for visual comparison.

https://openimaginglab.github.io/UltraFusion/
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