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1. Dataset Details

In the Unified Image Restoration Task, we address two cat-
egories of tasks: Perceptual Image Restoration (PIR) and
Task-oriented Image Restoration (TIR). TIR involves three
downstream tasks: image classification, semantic segmen-
tation, and object detection. Specifically, we select repre-
sentative benchmarks in each task for training and valida-
tion. For PIR, we use the DIV2K [1], Flickr2K [12], and
OST [33] datasets. For image classification, 80,000 images
are randomly sampled from 1,000 classes in ImageNet [4].
For semantic segmentation, the Cityscapes [26] dataset is
employed, while object detection uses 69,242 images ran-
domly selected from the COCO [14] training set. The sam-
pling dataset is indicated by the suffix "-s".

To simulate diverse and challenging visual scenarios, we
augment these datasets with 15 types of synthetic degra-
dations generated by the method [8]. These degradations
include fog, snow, frost, exposure, contrast, elastic trans-
form, pixelation, JPEG compression, Gaussian noise, im-
pulse noise, shot noise, motion blur, defocus blur, glass blur,
and zoom blur. Additionally, we retain clean images in the
training set to enhance the model’s ability to restore high-
quality images.

As shown in Figure 1, these synthetic degradations effec-
tively mimic a wide range of challenging conditions, where
each degradation type having five distinct levels to improve
UniRestore’s robustness in handling diverse image quali-
ties. Consequently, we not only evaluate the model in a syn-
thetic degradation dataset, but also test it on various exist-
ing benchmarks and real-world datasets, demonstrating the
generalizability of the proposed model. Detailed attributes
of the datasets are provided in Table 1, 2, 3, 4.

* Indicates equal contribution.

Datasets Domain of Data Num of images Degradation types Dist. types

DIV2K [1] train 800 degradation synthetic
Flickr2K [12] train 2,650 degradation synthetic

OST [33] train 10,324 degradation synthetic
DIV2K [1] testing 100 degradation synthetic

RESIDE-SOTS [11] testing 1,000 fog synthetic
Rain100L [34] testing 100 rain synthetic
UHDSnow [32] testing 200 snow synthetic

GoPro [23] testing 100 blur synthetic
Urban100 [9] testing 100 noise synthetic
BSD68 [22] testing 68 noise synthetic

CBSD68 [22] testing 68 noise synthetic
KodaK [22] testing 24 noise synthetic

McMaster [22] testing 18 noise synthetic
Set12 [22] testing 12 noise synthetic
UDC [35] testing 60 unknown realistic

Practical [34] testing 15 rain realistic
Snow100k-real [17] testing 200 snow realistic
RESIDE-Uann [11] testing 4,809 fog realistic

Table 1. Sizes and characteristics of PIR datasets.

Datasets Domain of Data Num of Images Num of Categories Degradation types Dist. types

ImageNet-s [4] train 80,000 1,000 degradation synthetic
ImageNet-s [4] testing 20,000 1,000 degradation synthetic

CUB [31] testing 5,794 200 degradation synthetic
Caltech-256 [6] testing 30,607 256 degradation synthetic

Table 2. Sizes and characteristics of image classification

datasets.

Datasets Domain of Data Num of images Degradation types Dist. types

Cityscapes [26] train 2,975 degradation synthetic
Cityscapes [26] testing 500 degradation synthetic

FoggyCityscapes [26] testing 500 fog1, fog2, fog3 synthetic
ACDC [27] testing 500 foggy, rain, snow, night realistic

Table 3. Sizes and characteristics of semantic segmentation

datasets.

Datasets Domain of Data Num of images Num of Categories Degradation types Dist. types

COCO-s [14] train 69,242 80 degradation synthetic
COCO [14] testing 2.935 80 degradation synthetic
RTTS [11] testing 4,321 5 fog realistic

Table 4. Sizes and characteristics of object detection datasets.
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Figure 1. Illustrative samples of images with synthetic degradations from the DIV2K [1] dataset.

Module PIR Cls Seg
PSNR → ACC → mIoU →

UniRestore w/o CFRM 21.43 63.10 55.48
UniRestore w/o Group Channel Attention 22.93 66.80 61.28
UniRestore 24.32 71.65 66.05

Table 5. Comparative analysis of different CFRM variants.

2. More Experiments

2.1. Investigation of CFRM

To verify the effectiveness of the components in Com-
plementary Feature Restoration Module (CFRM), we de-
signed three different variants for analysis: (i) UniRestore
w/o CFRM: using the vanilla encoder features without any
restoration; (ii) UniRestore w/o Group Channel Attention:
employing only the feature enhancement module for feature
recovery; and (iii) UniRestore: incorporating all modules.
The results are shown in Table 5, demonstrating that UniRe-
store with all modules outperforms the other two variants,
highlighting that both the feature enhancement module and
group channel attention play crucial roles in effectively
restoring clear features.

2.2. Extendability Evaluation

To further analyze the extendability of UniRestore, we ex-
panded on the experiments in Section. 5.4 of the main pa-
per. Specifically, UniRestore leverages a pre-trained model
and optimizes a new learnable prompt using object detec-
tion loss. For other baselines, updating jointly across PIR,
image classification, semantic segmentation, and object de-
tection to prevent catastrophic forgetting, denoted by the
suffix "**", where the original baselines trained only on
PIR, image classification, and semantic segmentation, indi-
cated by the suffix "*". We employed RetinaNet [13] as the
recognition model, sampling training data from the COCO
[14] training set and evaluating on both the intra-domain

Methods PIR Cls Seg Obj-intra Obj-inter
PSNR → ACC → mIoU → mAP → mAP →

LQ - 51.75 40.36 16.28 45.63
DIP* [16] 18.62 59.80 51.81 - -
DIP** [16] 18.17 57.90 50.76 22.31 54.29
URIE* [30] 17.98 65.20 50.56 - -
URIE** [30] 17.35 64.25 49.23 21.28 49.23
NAFNet* [2] 19.81 57.65 51.91 - -
NAFNet** [2] 19.23 56.10 50.24 17.64 48.83
PromptIR* [25] 21.94 64.05 54.67 - -
PromptIR** [25] 21.63 62.95 53.16 21.39 50.61
UniRestore 24.32 71.65 66.05 29.53 58.06

Table 6. Extendability performance analysis for object detec-

tion. When adding a new downstream task, existing methods
experience a decline in performance on previously trained tasks
(i.e., PIR, classification, and semantic segmentation). In contrast,
UniRestore only requires updating the prompt for the new task
while keeping all other parameters fixed, ensuring that the perfor-
mance on previously trained tasks remains unaffected.

Training Strategy COCO RTTS Finetuning Parameters

Tuning Prompt Only 29.53 58.06 < 1k
Full Fine-tuning 30.14 58.51 ↑ 21 million

Table 7. Computational Overhead for Extended Tasks.

COCO [14] validation set with the synthetic degradations
and the inter-domain RTTS [11] dataset.

In Table 6, we demonstrate that UniRestore achieves best
performance on both intra- and inter-domain object detec-
tion datasets (denoted as Obj-intra and Obj-inter). Further-
more, while existing methods suffer from overall perfor-
mance degradation as tasks increase, UniRestore maintains
stable results on existing tasks. We further compare object
detection training by adding new prompts versus starting
from scratch. Table 7 shows that full fine-tuning slightly
improves performance for new tasks but requires signifi-
cantly more parameters. In contrast, UniRestore only re-
quires the addition of a task-specific prompt with its cor-
responding objectives and data, while keeping the weights
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Figure 2. Visual comparison of using diffusion prior.

Method PIR Cls Seg
PSNR → ACC → mIoU →

UniRestore w/o Diffusion Prior 23.52 69.25 64.93
UniRestore 24.32 71.65 66.05

Table 8. Effectiveness of diffusion prior.

and prompts for previously trained tasks fixed. The design
ensure that performance on the original tasks remains un-
affected, highlighting its efficiency and scalability in ex-
tending to other downstream tasks through the Task Feature
Adapter (TFA) module.

2.3. Investigation of Diffusion Prior

To further analyze the impact of the diffusion prior on
UniRestore, we conducted a comparative study with a
variant, "UniRestore w/o Diffusion Prior," which employs
only the autoencoder without a denoising processing stage.
Specifically, UniRestore utilizes the encoder-generated la-
tent features as inputs to the Controller, which guides the
denoising U-Net to produce Flatent,0 as the decoder’s input.
To validate the effectiveness of the diffusion prior, we re-
move the Controller, denoising U-Net, and SC-Tuner from
UniRestore, and instead directly use the encoder-generated
latent features as inputs to the decoder for training. As
shown in Table 8, using the diffusion prior achieves better
performance across both PIR and TIR scenarios. Moreover,
Figure 2 illustrates that while both methods effectively re-
store clean images, the integration of denoising processing
enables the generation of richer texture details. This experi-
ment demonstrates that UniRestore, with the diffusion prior,
further improves the quality of perceptual and semantic fea-
ture representations, leading to superior restoration results.

2.4. Investigation of Task Prompt

To assess the effectiveness of task prompts, we perform
analyses with different prompts. Figure 3 presents indi-
vidual restorations of the same image using PIR, Cls, and
Seg prompts. The PIR prompt results in a smoother image,
whereas the Cls and Seg prompts emphasize more high-
frequency details. As shown in Table 9, cross-testing dif-
ferent prompts on downstream tasks shows that the corre-
sponding task prompt yields the best performance.

Input PIR Cls Seg GT

Figure 3. Visual comparison of using different task prompts.

Task Prompt PIR Cls Seg
PSNR → ACC → mIoU →

PIR 24.32 67.60 62.97
Cls 22.12 71.65 63.66
Seg 21.33 68.10 66.05

Table 9. Effectiveness of task prompts.

Adjust TIR Balance Adjust PIR
(ωPIR,ωCls,ωSeg) (0.1, 0.1, 10) (0.1, 10, 0.1) (10, 0.1, 0.1) (20, 0.1, 0.1) (50, 0.1, 0.1)
PIR (PSNR →) 22.87 23.19 24.32 24.78 25.29

Cls (ACC →) 69.85 72.15 71.65 70.75 69.10
Seg (mIoU →) 67.19 63.44 66.05 64.40 62.52

Table 10. Analysis of the weighting coefficients ωtask.

Inputs LQ URIE PromptIR UniRestore
Caltech-256 (ACC →) 58.22 69.49 68.57 74.28

Table 11. Zero-shot classification comparison on the whole

Caltech-256 [6] dataset (unseen datasets with synthetic degra-

dations).

Methods ResNet-50 [7] ViT-B [5] VGG16 [29] Swin-T [18] RVT [21]
LQ 51.75 67.65 42.80 69.25 73.10
UniRestore 71.65 77.05 64.95 78.85 79.35

Table 12. Generalization performance across unseen classi-

fiers.

2.5. Justification for Weighting Coefficient ωtask

ωtask adjusts the objective function by scaling the task-
specific loss. To investigate the effect of different ωtask
scales, we conducted a comprehensive study using various
sets of coefficients. As shown in Table 10, increasing ω en-
hance focus on specific tasks but may impair performance
on others. Based on experimental results, we set ωtask to
(10, 0.1, 0.1).

2.6. Generalization Performance Evaluation

Zero-shot Performance for Downstream Tasks To en-
sure diversity and efficiency within our computational con-
straints, we design the training data of TIR with equal
sampling across categories. We then retrain UniRestore
on the entire ImageNet [4] dataset and evaluate it on the
CUB [31] dataset, where its performance improves from
53.70 to 53.94, confirming that UniRestore maintains strong
generalization even with partial data. Additionally, we
conduct zero-shot testing of UniRestore on the Caltech-
256 [6] dataset with synthetic degradations, demonstrating
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PSNR → SSIM → PSNR → SSIM → PSNR → SSIM → PSNR → SSIM → PSNR → SSIM → PSNR → SSIM → PSNR → SSIM → PSNR → SSIM → PSNR → SSIM → PSNR → SSIM → PSNR → SSIM →
URIE [30] 14.15 0.6100 18.32 0.5843 15.26 0.6150 17.99 0.7632 18.86 0.6645 27.05 0.7980 17.45 0.2605 26.46 0.7734 22.82 0.6582 21.38 0.6987 19.97 0.6426
DIP [16] 12.74 0.6315 17.82 0.5648 17.33 0.7221 19.63 0.8468 14.78 0.6111 27.00 0.8039 15.68 0.2520 26.16 0.8039 21.37 0.6573 21.21 0.6915 19.37 0.6585
NAFNet [2] 13.63 0.7429 20.66 0.6973 13.99 0.6728 16.42 0.8089 17.71 0.8154 28.24 0.8241 30.52 0.8088 28.66 0.8439 25.53 0.7809 23.00 0.7015 21.84 0.7697
PromptIR [25] 18.02 0.8423 23.95 0.7624 18.55 0.7432 24.06 0.8684 25.98 0.9142 27.72 0.8267 29.05 0.7878 28.11 0.8461 26.64 0.8296 21.49 0.6414 24.36 0.8062
UniRestore 21.36 0.8707 25.58 0.8385 19.37 0.7298 24.18 0.8734 27.82 0.9299 28.80 0.8523 31.80 0.8523 29.19 0.8606 27.56 0.8507 23.97 0.7152 25.96 0.8373

Table 13. Performance comparison of existing methods on the seen dataset which consists 15 distinct degradation on DIV2K [1]

testing set for PIR task.

Methods PSNR → SSIM → LPIPS ↓ MUSIQ → MANIQA → CLIP-IQA →
URIE [30] 18.81 0.6406 0.3566 42.55 0.2276 0.4987
PromptIR [25] 24.85 0.8447 0.2383 58.67 0.3278 0.6032
DiffBIR [15] 24.16 0.8340 0.2359 53.95 0.3104 0.5767
UniRestore 26.00 0.8668 0.1713 62.00 0.3513 0.6444

Table 14. Quantitative results of PIR on one DIV2K [1] and

five unseen PIR datasets [9, 11, 22, 23, 32, 34] across various

metrics.

Methods TOLED [35] POLED [35]
PSNR → SSIM → LPIPS ↓ PSNR → SSIM → LPIPS ↓

DIP [16] 24.32 0.7907 0.3680 13.84 0.4831 0.7520
URIE [30] 24.78 0.7845 0.3699 14.23 0.4911 0.7204
NAFNet [2] 26.97 0.7916 0.3393 14.73 0.5522 0.7526
PromptIR [25] 25.98 0.7977 0.4219 13.07 0.5475 0.7352
UniRestore 28.12 0.8146 0.3043 17.01 0.5563 0.7049

Table 15. Quantitative results of PIR on unseen under-display

camera image restoration datasets (i.e., TOLED [35] and

POLED [35]).

Methods Practical [34] RESIDE-Unann [17] Snow100k-real [11]
CLIP-IQA → PAQ2PIQ → CLIP-IQA → PAQ2PIQ → CLIP-IQA → PAQ2PIQ →

DIP [16] 0.5995 70.69 0.4625 67.76 0.5201 68.48
URIE [30] 0.4310 68.27 0.3411 66.85 0.3464 66.88
NAFNet [2] 0.6016 70.75 0.4702 68.90 0.5503 68.88
PromptIR [25] 0.6376 70.99 0.5053 69.17 0.5886 69.77
UniRestore 0.6706 71.71 0.5294 69.74 0.6061 70.81

Table 16. Quantitative results of PIR on unseen real-world

datasets.

improved performance over other baselines across various
categories, as shown in Table 11.
Cross-Classifier Generalization UniRestore adopts
ResNet-50 [7] (Cls) and DeepLabV3+ [3] (Seg) as recog-
nition models during training. For testing, restored images
are fed into ViT [5] (Cls) and RefineNet-lw [24] (Seg)
without finetuning. Table 12 further compares additional
classifiers as test backbones, demonstrating UniRestore’s
effectiveness in enhancing downstream models.
Effectiveness on Clean Image. To assess performance on
clean inputs, we evaluate a ResNet-50 [7] model for classi-
fication, which improves from 72.80 to 74.10. For segmen-
tation, using DeepLabV3+ [3], UniRestore achieves 74.82,
closely matching the original DeepLabV3+ [3]’s 75.64.
These improvements result from training with a mixture of
15 synthetic degradations and clean inputs, demonstrating
the model’s robustness.

2.7. Quantitative Evaluation for PIR

In the quantitative evaluation, we extend the evaluation of
PIR on seen dataset which involves ten distinct degrada-
tion types from the DIV2K [1] testing set, as detailed in Ta-
ble 13. The experimental results demonstrate that UniRe-
store achieves the highest overall performance, validating
UniRestore’s robustness and generalizability across diverse
degradation scenarios. Table 14 further shows that UniRe-
store excels in both full-reference and no-reference IQA.

To further evaluate the generalization for real-world sce-
narios, we conduct zero-shot testing on several unseen real-
world datasets. As shown in Table 15, it demonstrates the
UniRestore’s robustness in addressing real-world unknown
tasks (i.e., under-display camera (UDC) image restoration
[35]), without requiring any fine-tuning. The results indi-
cate that UniRestore exhibits a better overall performance,
demonstrating its capability to restore both perceptual and
semantic features. Furthermore, we conduct a evaluation
across three unseen real-world adverse weather datasets,
as detailed in Table 16. The results show that UniRestore
achieves competitive performance across two image quality
assessment (IQA) metrics, highlighting its robustness and
applicability in handling diverse real-world scenarios.

2.8. Qualitative Evaluation for PIR

As illustrated in Figure 4 and Figure 5, our qualitative eval-
uation provides a comprehensive comparison, highlight-
ing the effectiveness of UniRestore across various types of
degradation. UniRestore successfully removes attenuation
caused by air particles such as fog, rain, and snow while
preserving and reconstructing critical object information.
In the motion blur and overexposure scenarios, UniRestore
reconstructs fine-grain information, resulting in better fi-
delity and visually natural restoration images. Additionally,
UniRestore effectively mitigates artifacts caused by com-
pression, improving texture representation and overall im-
age quality. These results highlight UniRestore’s strength
in integrating restored encoder features with the diffusion
prior, leading to high-quality restoration performance.
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Figure 4. Qualitative Analysis of Perceptual Image Restoration: A visual comparison across four existing benchmarks, including
RESIDE-SOTS [11], Rain100L [34], UHDSnow [32] and BSD68 [22], highlighting the UniRestore’s generalizability in unseens datasets.

3. Implementation Details

3.1. Training Details

UniRestore is established based on SD-turbo [28], with pre-
trained weights frozen to preserve the diffusion prior. The
controller adopts a lightweight U-Net encoder architecture
combined with SC-Tuner modules [10] for effective con-
trol of the denoising process. The CFRM and TFA modules
are integrated between each layer of the pre-trained autoen-
coder, with M = 3 pairs of modules, consisting of seven
layers for both the encoder (4 original layers + 3 CFRM)
and the decoder (4 original layers + 3 TFA). The number
of groups in CFRM is 16, corresponding to 15 degradations
plus one clean condition. The training pipeline consists of
three stages: in the first stage, CFRM, the controller, and
SC-Tuner are trained for feature restoration using paired de-
graded data, where the coefficients of CFRM loss is (ε1,
ε2, ε3) = (0.1, 0.1, 0.01). In the second stage, the TFA is
trained with three learnable prompt vectors for PIR, image
classification, and semantic segmentation, where dimen-
sions of each prompt is 512 and the coefficients of task loss
are (ωPIR, ωSeg, ωCls) = (10, 0.1, 0.1). Subsequently, a new
task prompt vector can be individually fine-tuned to intro-
duce additional tasks, using the corresponding dataset and
objective function for training. For the training data, images

are resized and cropped to 512!512 with random horizontal
flips. The network is optimized using AdamW [19] with a
learning rate of 5 ↔ 10→5 and a cosine annealing scheduler
[20], and trained on 8 NVIDIA Tesla V100 GPUs (32 GB)
with a batch size of 48. In terms of parameter statistics,
the SD-turbo comprises 975 million non-trainable parame-
ters. Additionally, we integrate a controller with 74.7 mil-
lion trainable parameters. For the proposed components,
the Complementary Feature Restoration Module (CFRM)
and the Task Feature Adapter (TFA) include 26 million and
21 million trainable parameters, respectively.

3.2. Inference Details

During the inference stage, UniRestore enables task-
specific image restoration by switching task prompts, allow-
ing the restored outputs to be optimized for specific down-
stream applications. The model supports inputs of arbi-
trary resolution, automatically resizing images smaller than
512↔ 512 to meet processing requirements. UniRestore re-
quires only one denoising step to efficiently generate latent
features while preserving high-quality results. The post-
processing dependents on the downstream task, for image
classification, restored images are normalized and resized to
224↔ 224 to comply with recognition model requirements,
while for tasks like semantic segmentation or object detec-
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Figure 5. Qualitative Analysis of Perceptual Image Restoration: A visual comparison across various synthetic degradations on the
DIV2K [1] testing set, including fog, snow, frost, noise, blur, exposure, and JPEG compression, highlights the robustness of UniRestore in
restoring images affected by diverse degradation types.

tion, outputs are adjusted to match the original input reso-
lution and format. This design ensures UniRestore’s versa-
tility and effectiveness in delivering both perceptual quality
and task-specific performance across varied scenarios.

In terms of computational efficiency, we conducted ex-
periments on the complete DIV2K [1] testing set. The in-
ference was performed on an NVIDIA RTX 4090 GPU with

input images resized to 512 ↔ 512. The average inference
time was 16 milliseconds for the encoding process, 113 mil-
liseconds per step for denoising process, and 3.8 millisec-
onds per image for decoding, consuming 6.44G VRAM,
5.93 TFLOPs for each image.
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