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Supplementary Material

In this appendix, we extend the discussion of our ap-

proach on video amodal segmentation. We first discuss

additional setup details for our method (Sec. 6), and then

cover more experimental analysis (Sec. 7), followed by ex-

amples of our method’s potential applications (Sec. 8). We

also show more qualitative results from our method (Sec.

9). Please see the project page for a video version of all

figures.

6. Additional setup details

6.1. Stable Video Diffusion modifications

First, we replace the input conditioning c, originally

an RGB image, with binary modal masks of shape

RT⇥1⇥H⇥W . By default, the variational autoencoder

(VAE) [25] in SVD requires a 3-channel input. To ad-

dress this mismatch in the number of channels, we repli-

cate the binary mask three times, following the approach

for single-channel VAE inputs in a recent work [22]. Af-

ter encoding each (replicated) mask seperately, we obtain a

latent tensor of shape RT⇥C⇥
H

F
⇥

W

F . This latent represen-

tation, concatenated with a noise image of the same shape,

forms the input to our backbone which is a spatio-temporal

3D U-Net [4, 44]. The final shape of this input becomes

RT⇥2C⇥
H

F
⇥

W

F . In contrast to the vanilla SVD, where the

latent space of a single image is duplicated T times to align

with the 3D U-Net’s input requirements, our 3D U-Net gets

as input T unique frames of the modal mask sequence being

used as conditioning.

6.2. Inference details

During inference with our video diffusion model, we follow

common practices [3] by employing the stochastic sampler

from EDM [20]. We simplify this process by omitting the

second-order correction and keeping the explicit Langevin-

like “churn” factors constant. The denoising process is per-

formed over 25 steps. Specifically, when denoising the la-

tents from zt to z0 for i 2 {t, · · · , 1}, each denoising step

can be expressed as:

ẑi�1  ẑi + (�i�1 � �i)
(ẑi �D✓(ẑi;�i))

�i

(2)

Furthermore, we employ classifier-free guidance

(CFG) [15] to balance the quality and diversity of the

generated samples. During training, we randomly set the

conditioning to zero with a probability of ⇢ = 0.1 to

simulate the unconditional case. During inference, we

combine the conditional and unconditional predictions

using a guidance scale of s = 1.5, as defined as:

F̃✓(z, c) = F✓(z, ;) + s(F✓(z, c)� F✓(z, ;)) (3)

After denoising, the latent predictions are projected back

into pixel space using the VAE decoder, which yields

three-channel representations. To convert these into single-

channel binary masks in the amodal segmentation stage, we

sum the channel values (from 0 to 255) and binarize the pre-

dictions by thresholding. The threshold is chosen as a per

channel pixel-value of 200. Finally, we take the union of

the prediction with the input modal masks, ensuring modal

masks remain a subset of amodal masks and are properly

reflected in the output.

Regarding inference time, our method takes approxi-

mately 0.95 seconds per frame on a single RTX 3090 GPU,

using around 8GB of VRAM with FP16 precision.

6.3. Baselines

In this section, we provide additional details of the image-

and video-level amodal segmentation methods used for

comparison.

For image-level amodal segmentation, ‘Convex’ [60]

generates the geometric convex hull of modal masks, while

‘ConvexR’ [60] refines this by including only the con-

vex hull within occluded regions predicted by ‘PCNet-

M’. ‘PCNet-M’ [60] is a self-supervised regression method

that recovers amodal masks within occluder areas based

on frame-level object ordering recovery. ’AISFormer’ [51]

employs a transformer-based head appended to a modal seg-

mentation backbone to directly predict all amodal bounding

boxes and masks within an image. ‘pix2gestalt,’ [36] is an

image diffusion-based method that generates amodal con-

tent conditioned on the RGB image and modal masks of the

objects.

For video-level amodal segmentation, ‘SaVos’ [57] em-

ploys a CNN-LSTM architecture that processes RGB and

modal mask patches, along with optical flow, to pre-

dict amodal masks and motions. ‘EoRaS’ [9] proposes

an object-attention encoder that incorporates Bird’s-Eye

View (BEV) 3D information, relying on having access to

groundtruth camera parameters. ‘C2F-Seg’ [11] leverages

a vector-quantized latent space for coarse feature learning,

refined with a convolutional module; though designed for

image-level tasks, it extends to video segmentation using a

spatial-temporal transformer block.

For generic video regression approaches, ‘Video-

MAE’ [50] is a transformer-based autoencoder that we

adapt for our task by setting the masking ratio to zero, ap-



Table 5. Quantitative results on MOVi-B/D with uncropped

input. Enlarged modal region-cropped input limits the model’s

ability to predict an amodal mask when an object is fully occluded.

Using the entire image as input restores the model’s ability to com-

plete amodal masks fully, especially when the modal area is small.

This results in substantial metric improvements compared to Table

2 in the main paper. We copy over the results here for reference.

Input Method
MOVi-B MOVi-D

mIoU mIoUocc mIoU mIoUocc

Modal
cropped

VideoMAE [50] 78.74 42.86 70.93 32.78

3D-UNet 82.16 49.81 75.65 40.86

Ours (Top-1) 83.51 53.75 77.03 44.23

Ours (Top-3) 83.93 54.56 77.76 45.6

Uncropped

VideoMAE [50] 85.35 49.53 79.13 42.41

3D-UNet 84.24 46.17 76.90 36.69

Ours (Top-1) 87.8 53.69 82.97 47.86

Ours (Top-3) 88.43 54.64 84.04 49.43

plying supervised training, and using the decoder during in-

ference. ‘3D-UNet’ [4], the backbone of our video diffusion

model, contains interleaved residual and transformer blocks

with spatial and temporal modules but is trained to perform

one-step generation without any iterative denoising.

7. Additional experiments

Note that the video versions of all qualitative results in this

and the following sections can be found directly on the

project page.

Improved results on MOVi-B/D. All results we report

till now on MOVi-B/D follow prior work in segmenting ob-

jects in a region which is defined as a 100% extension of

the region enclosed by the input modal mask. Therefore,

all images are cropped to this region before being sent as

input to any of the methods. This is different from the stan-

dard protocol used in other datasets, where the entire im-

age is sent as input to the methods (without any cropping).

Here, we include results from training our model with the

entire image as input on the MOVi-B/D datasets. As shown

in Table 5, this fix significantly improves metrics, with our

method achieving 4% and 6% gains in mIoU on MOVi-B

and MOVi-D, respectively. Regression methods also benefit

notably from this setting. We conclude that this is because

MOVi-B/D include many instances of complete occlusions

of objects, for which segmentation in a cropped region is

not enough for predicting the amodal mask.

Qualitative evidence for pseudo-depth conditioning.

The quantitative advantage of pseudo-depth conditioning

was demonstrated in Table 3 of the main paper. Here, we

provide qualitative evidence to illustrate the source of this

improvement. As shown in Figure 10, pseudo-depth condi-

tioning encourages our method to segment areas closer to

Figure 10. We show how pseudo-depth aids amodal segmenta-

tion. Object’s surrounding regions with lower depth values, i.e.,

closer to the camera, act as potential occluders. In the top row, the

occluders are the person and chair to the left of the object; in the

bottom row, the occluder is the car door below the person. Depth

information implicitly guides our method to complete these oc-

cluded regions.

Figure 11. Comparison across diverse categories on TAO-

Amodal. On a subset of the most frequent super-categories, our

method consistently outperforms others under the AP50 metric.

The overall trend is aligned with the quantitative results in Table 1.

We attribute the strong generalization ability of our model to the

SVD priors and its effective utilization of temporal information.

the camera, suggesting that depth serves as an implicit indi-

cator of potential occluders and therefore, gives information

about which occluded boundary to extend in order to predict

the amodal mask.

Ablation on weights initialization. We leverage the real-

world priors learnt by large-scale diffusion models by utiliz-

ing pretrained SVD checkpoints [3]. Here, we evaluate the

importance of this initialization. In Table 6, we compare

the performance of our model and the 3D U-Net with and

without pretrained weights. Results show that excluding the

checkpoint leads to a performance drop for both models,

with a more pronounced decline for ours. These results un-

derscore the importance of the SVD priors.

Building an end-to-end segmentation and completion

model. Unlike our two-stage method, which first per-

forms amodal segmentation and then inpaints content, the

image diffusion-based method pix2gestalt [36] adopts a

one-stage approach to directly generate amodal content and

derive masks. A similar one-stage approach can be ex-

tended for our video setting. However, as shown in Table 7,

our two-stage method demonstrates clear advantages over



Table 6. Ablation of SVD priors. We study the effect of us-

ing pretrained SVD weights as initialization for our training. We

find that leveraging priors from large-scale pretraining of SVD en-

hances both our method and the 3D UNet baseline, with particu-

larly substantial improvements observed for our method.

Method
pretrained

ckpt?

SAIL-VOS TAO-Amodal

mIoU mIoUocc AP25 AP50 AP75

Ours 7 68.89 26.96 93.73 79.45 57.87

Ours 3 75.17 51.28 94.89 85.03 66.87

3D UNet 7 70.85 32.66 94.88 83.81 59.75

3D UNet 3 72.79 39.54 94.59 83.83 64.33

Table 7. Ablation study on end-to-end amodal content com-

pletion. We train an end-to-end version of our two-stage pipeline

with a dataset of curated modal-amodal RGB training pairs from

SAIL-VOS, in a similar fashion to pix2gestalt [36]. Compared

to the two-stage results in Table 1 of the main paper, this ap-

proach shows a significant performance drop in both in-domain

and zero-shot evaluations, highlighting the superiority of the two-

stage method.

Method
SAIL-VOS TAO-Amodal

mIoU mIoUocc AP25 AP50 AP75

Two-stage 77.07 55.12 97.28 89.25 71.99

One-stage 66.15 40.31 70.65 57.51 37.22

the one-stage approach. We attribute this low performance

of the end-to-end method to the lack of data available for

training such a single-stage method. In contrast, the two-

stage method benefits from breaking down the pipeline into

video amodal segmentation and content completion. For the

former, it is easy to find large-scale training data of modal-

amodal mask pairs from synthetic datasets. For the latter,

since the content completion task reduces to video inpaint-

ing, less amount of training data is sufficient for finetuning.

Generalizability across diverse categories. Our model

demonstrates strong generalization ability in a zero-shot

setting on the real-world TAO-Amodal dataset, which in-

cludes many previously unseen categories. TAO-Amodal is

a collection of 7 different datasets, covering a wide range

of in-the-wild scenarios. Specifically, it consists of 833 ob-

ject categories, out of which only 20 categories are seen

during training in SAIL-VOS. For more clarity, we include

a performance breakdown on a subset of the most frequent

super-categories in TAO-Amodal, as shown in Figure 11 .

The results further highlight our model’s capacity to gener-

alize across diverse categories.

8. Examples of applications

4D reconstruction. Our method enables 4D reconstruc-

tion for occluded objects when used in conjunction with off-

Figure 12. 4D reconstruction results. Without amodal comple-

tion by our method, the 4D reconstruction exhibits blank regions

and unrealistic artifacts in occluded areas, such as the person’s

back and leg. The varying occluded portions over time confuse

SV4D, disrupting its understanding of the object’s 3D structure.

In contrast, using completed objects from our method significantly

improves the reconstruction quality, producing more consistent

and clear novel-views.

the-shelf SV4D [54]. In Figure 12, we compare reconstruc-

tions with and without completion. Without completion,

blank regions appear in occluded areas, making it more dif-

ficult to hallucinate reasonable re-projections across differ-

ent views. In contrast, our method allows SV4D to produce

consistent and clearer 4D reconstructions.

Scene manipulation. With amodally completed objects

in the scene, we can change their orderings and positions

without exposing previously occluded regions. Figure 13

shows examples of scene manipulation, where our method

facilitates manual re-composition of scenes by inpainting

the occluded content of objects.

Pseudo-groudtruth for TAO-Amodal masks. TAO-

Amodal [18] provides ground truth for amodal bounding

boxes but lacks annotations for amodal masks due to the

challenges of manual labeling of occluded objects in videos.

We show that our method can be used to generate high-

quality pseudo-ground truth masks for this dataset by us-

ing the information about ground-truth amodal bounding

boxes, which define the extent of the amodal shape. We

find that using the amodal bounding boxes to crop the input

modal mask sequences, one can train a more accurate video

amodal segmentation method exclusively on SAIL-VOS.

This way, our approach significantly improves evaluation



Figure 13. Scene manipulation examples. Using de-occluded

objects from our method, we can reposition and reorder them to

create new scenes. In the top rows, the relationship between the

person and the soccer ball is altered, changing the scene from “the

person is juggling” to “the person places the soccer ball aside and

practices a juggling posture.” In the bottom rows, the middle gi-

raffe is moved to the front and its position is adjusted.

Table 8. Pseudo-groundtruths on TAO-Amodal. We show

that using the amodal bounding box prior from the TAO-Amodal

dataset to specify the extent of the output amodal segmentation

mask, can help improve the quality of video amodal segmenta-

tion. We use this version of our method to produce ‘pseudo-

groundtruths’ for TAO-Amodal. We find that these pseudo-

annotations can help improve the quantitative performance of

baselines like VideoMAE. See text for more details

Input setting
SAIL-VOS TAO-Amodal

mIoU mIoUocc AP25 AP50 AP75

Uncropped 77.07 55.12 97.28 89.25 71.99

Amodal cropped 87.44 69.81 99.59 99.59 99.48

metrics and aligns precisely with the amodal bounding box

extent, as shown in Table 8. Figure 14 further illustrates the

qualitative results of the pseudo-ground truth masks which

are high-fidelity across diverse object categories. Quantita-

tively, we find that using the pseudo-groundtruths for fine-

tuning baselines like VideoMAE (which have already been

pre-trained on SAIL-VOS), improves their performance on

the TAO-Amodal dataset by around 25%, 25%, and 20%

on AP25, AP50, and AP75 respectively. Apart from this,

the generated pseudo-groundtruths can be used to semi-

automate the amodal mask annotation process as this is a

challenging and inherently ill-posed problem.

Note that we do not include this data point in the main

paper as at inference we cannot expect to have access to

amodal bounding boxes but in order to produce pseudo-

groundtruth, one can adopt this approach.

9. Qualitative results

A video version of all figures in this section are available on

the project page.

Here, we present qualitative results from all datasets and

additional, in-the-wild scenarios. Figures 16, 17, 18, 19 and

20 compare our amodal segmentation method with more

baselines on SAIL-VOS, TAO-Amodal, and MOVi-B/D.

Our method demonstrates superior performance in gener-

ating high-fidelity shapes in the occluded regions of ob-

jects. Figure 21 showcases additional in-the-wild content

completion results, highlighting the photo-realistic quality

and strong generalization capability of our method.

Failure cases. In Figure 15, we show four different kinds

of failure cases. In the first case with a person swimming,

our method does not successfully complete the person’s

amodal region. This happens often if the object of interest

is occluded throughout the extent of the video; our model is

not able to understand if this is a completely visible object

or a consistently occluded object. In the second case, the

occluded object is a bow, which has never been seen before

and is completely out-of-distribution from the set of objects

in SAIL-VOS. Our method fails in this case. In the third

and fourth case, our method incorrectly assumes the height

of a completely visible man to be greater than what it is,

and predicts a sitting person to be standing. Therefore, our

method lacks contextual cues about what the scene is and

how the modal region looks like in the first-stage.



Figure 14. Qualitative results for pseudo-ground truth of TAO-Amodal masks. Leveraging the amodal bounding box as a strong

prior, our method demonstrates versatility across diverse categories, such as person, tractor, and bottles, and generalizes well to unseen

categories like snowboards and horses. This high-quality pseudo-ground truth can semi-automate the manual annotation of amodal masks

in real-world videos.

Figure 15. Qualitative analysis of failure cases of our method. See text for more details.



Figure 16. Qualitative results on SAIL-VOS. (1/2)



Figure 17. Qualitative results on SAIL-VOS. (2/2)

Figure 18. Qualitative results on TAO-Amodal. (1/2)



Figure 19. Qualitative results on TAO-Amodal. (2/2)



Figure 20. Qualitative results on MOVi-B/D.

Figure 21. Qualitative results for amodal content completion for in-the-wild scenarios.
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