
Vid2Sim: Generalizable, Video-based Reconstruction of Appearance, Geometry
and Physics for Mesh-free Simulation

Supplementary Material

This supplementary material covers the following sec-
tions: More Implementation Details (Sec. 1); More Results
on Dynamic Reconstruction (Sec. 2); Generalization Capa-
bility (Sec. 3). Please refer to our supplementary video for
a more comprehensive overview,

1. More Implementation Details
1.1. Large Video Vision Transformer
The pipeline of our Large Video Vision Transformer is
shown in Fig. 1. In our framework, we fine-tune the back-
bone network, VideoMAE [7], which is pre-trained on 16-
frame videos at a resolution of 224 × 224. To adapt it to
a higher resolution (448 × 448 in our setting), we interpo-
late the pre-trained positional embeddings to align with the
updated number of input tokens. The output tokens are av-
eraged across all the patches before being sent into the re-
gression MLPs. The regression MLPs for predicting E and
ν are identical and with widths of [768, 512, 256, 128, 1].
The regression MLP for predicting θ̂lbs has widths of
[768, 650, 650, 650, 650], where the width of the last layer
is equal to the number of trainable parameters for a linear
layer. We demonstrate in Tab. 1 that it is better to predict
only the last layer of θ̂lbs and keep the first 7 layers fixed
for consistency with the optimization stage (Stage II) than
to predict full layers in our task. This is because Hypernet-
work predicts ∼ 30k network parameters for full-layer LBS,
making training much more difficult than our one-layer pre-
diction design. We use GELU [4] as the activation function
for all regression MLPs.

	𝐸
Young’s Modulus

	𝜈

	𝜃#!"#

🔥 Large Video Vision Transformer

Poisson’s Ratio

LBS Network’s
 Weights

Regression MLP

Regression MLP

Regression MLP

VideoMAE
BackBone

Single-view Video

448×448×16

Tokenize

Input Tokens

Output Tokens

Averaged

Figure 1. Detailed pipeline of the large video vision transformer.

1.2. LBS and Jacobian Network
The implementation of the LBS and Jacobian network is
visualized in Fig. 2. Specifically, the LBS network com-

PSNR ↑ SSIM ↑ FoVVDP ↑
One-layer prediction (Ours) 28.83±3.06 0.954±0.014 7.907±0.859

Full-layer prediction 28.53±3.21 0.953±0.015 7.782±0.886

GT (data-free train) 29.40±2.59 0.957±0.012 8.169±0.579

Table 1. Quantitative results in Dynamic Reconstruction across
different LBS prediction settings using the same optimized geom-
etry and physical parameters for fairness.

Forward Time Backward Time 1
NΣN

i=1||Ji
θ − Ji

gt||22
4 blocks w/o PE 0.00081s 0.00158s 9.22× 10−7

2 blocks 0.00052s 0.00099s 5.12× 10−7

4 blocks (Ours) 0.00086s 0.00166s 4.04 × 10−8

GT Jacobian 6.51398s 0.00014s -

Table 2. Speed (time per iteration) and average accuracy across
different Neural Jacobian models. All the values are tested under
the setting of 2000 points & 10 handles on one NVIDIA-RTX-
4090 GPU.

prises 8 linear layers with a constant layer width of 64 and
ELU [3] activation function. We observe that the neural Ja-
cobian predominantly focuses on learning to predict high-
frequency features, rather than the low-frequency signals
typically modeled by the LBS prediction network. This in-
sight motivates us to adopt a design for predicting the Ja-
cobian that differs from the standard MLP architecture used
in the LBS network, where we incorporate positional en-
coding into the input to capture the high-frequency features
effectively. The input positions are embedded into a 512-
dimensional space using positional encoding. The model
comprises four residual blocks, each containing two linear
layers. The first two residual blocks have a layer width of
512, while the last two have a layer width of 1024. The out-
put is projected with a linear layer from the features. We
use the GELU [4] activation function in the Jacobian net-
work. We found that 4 blocks with positional encoding are
sufficient to predict the Jacobian that is accurate enough for
simulation, so we didn’t scale up it further to save data-
free training time. We report the speed-accuracy trade-off
for different Neural Jacobian models in Tab. 2. Note that
the time cost of Neural Jacobian is only meaningful in its
data-free training, which contains 10k iterations. It can be
ignored in the joint optimization of Stage II.

The LBS and Jacobian networks are first trained in a
data-free manner, supervised by randomly sampled X and
z, inspired by [1, 6]. The LBS network is optimized by min-
imizing an elastic loss and orthogonal regularization loss.

LBS MLP

🔥

		𝑊!(𝑿)

Jacobian MLP

🔥

𝒛𝒓𝒂𝒏𝒅

		ϕ%&'((𝑿, 𝒛)
Data-free
Training

		𝐽!(𝑿)

𝒛𝒓𝒂𝒏𝒅

	𝑭𝒓𝒂𝒏𝒅(𝑿, 𝒛) 		𝑭)	(𝑿, 𝒛) Data-free
Training

ℒ!"#$%&' + ℒ()%*(

Finite Difference
ℒ+,-

Data-free Training

Refinement

Di0erentiable Simulation & Rendering

ℒ+,-

Multi-view Videos
(Input)

Cubature
Points 𝑿

Positional
Encoding

Figure 2. Network structure of LBS network and Jacobian network.

backpack bell blocks bus cream elephant grandpa leather lion mario sofa turtle Mean

PS
N

R
↑ PAC-NeRF 18.03 21.74 21.67 19.05 19.81 20.68 20.20 19.48 20.67 17.06 19.60 22.09 20.01

Spring-Gaus 17.35 21.04 22.93 19.77 24.80 20.97 21.76 19.28 21.32 20.51 21.55 22.42 21.14
GIC 18.22 19.33 18.26 20.23 23.94 21.50 20.45 20.76 18.53 21.17 23.38 22.60 20.70

Ours (full) 26.59 27.26 31.29 25.64 33.85 27.95 24.09 31.11 25.89 26.54 27.82 30.81 28.24

SS
IM

↑ PAC-NeRF 0.882 0.956 0.935 0.900 0.900 0.924 0.941 0.929 0.931 0.932 0.918 0.933 0.924
Spring-Gaus 0.866 0.945 0.936 0.899 0.918 0.921 0.950 0.924 0.931 0.922 0.913 0.931 0.921

GIC 0.879 0.938 0.918 0.903 0.901 0.924 0.943 0.937 0.917 0.930 0.920 0.934 0.920
Ours (full) 0.940 0.964 0.971 0.935 0.951 0.955 0.953 0.975 0.949 0.951 0.942 0.973 0.955

Fo
V

V
D

P
↑ PAC-NeRF 5.873 6.514 6.803 6.330 4.695 6.681 6.516 6.437 6.581 3.989 5.779 6.943 6.095

Spring-Gaus 5.535 6.945 6.920 6.344 5.970 6.482 7.045 6.260 6.766 6.201 6.296 7.011 6.481
GIC 5.959 6.129 5.947 6.394 5.805 6.921 6.930 6.696 6.023 7.029 6.905 6.939 6.473

Ours (full) 8.331 7.640 8.921 7.898 8.900 8.398 7.020 9.053 7.659 8.015 7.912 9.000 8.229

Table 3. Quantitative comparison with previous methods on dynamic reconstruction (novel views).

backpack bell blocks bus cream elephant grandpa leather lion mario sofa turtle Mean

log(E)

PAC-NeRF 3.28 1.08 4.02 3.30 3.22 3.05 2.99 1.20 2.34 3.37 0.20 1.94 2.50
GIC 1.16 2.87 2.12 1.93 2.13 1.53 0.42 3.45 2.85 1.82 0.65 3.18 2.01

Ours (full) 0.69 0.15 0.54 0.26 0.95 0.18 1.07 0.73 0.48 0.50 0.18 0.44 0.51

ν

PAC-NeRF 0.21 0.23 0.33 0.16 0.12 0.06 0.36 0.26 0.14 0.33 0.30 0.01 0.21
GIC 0.11 0.24 0.29 0.18 0.08 0.24 0.26 0.02 0.14 0.22 0.01 0.08 0.16

Ours (full) 0.10 0.10 0.07 0.06 0.11 0.05 0.02 0.06 0.05 0.06 0.08 0.02 0.06

Table 4. Mean Absolute Error (MAE) among baselines and our method on physical property predictions.

The Jacobian network is optimized by minimizing the L2
loss between the predicted deformation gradient F(X, z)
and the estimated F̂(X, z) from the finite difference.

The two networks are then jointly trained along with
physical parameters according to the observed multi-view
videos, where we only minimize the L2 loss between sim-
ulated animations and the observed multi-view videos, as
described in Sec. 4.3 in the main paper.

1.3. Boundary Condition Implementation
We follow [6] to implement boundary conditions with in-
cremental potential contact for handling collision, the con-
straints are formulated with barrier functions that provide

extra potential energy. For example, our floor barrier in the
dynamic reconstruction and the future state prediction task
uses Ef = 105 × ΣN

i=1[max(0, hf − hi)]
2 as potential en-

ergy, where Ef is part of the external energy (See Eq. 2 in
the main paper). Barrier functions can be very flexible in
our method, and we provide more examples in Sec. 3.2.

2. More Results on Dynamic Reconstruction

In Sec. 2.1, we provide a comprehensive investigation by
showcasing additional qualitative results of dynamic recon-
struction and future state prediction across baselines, our
Stage I model, and our full model. In Sec. 2.2, we evaluate

the performance of dynamic reconstruction on novel views.
Additionally, we evaluate the prediction of physical proper-
ties E and ν in Sec. 2.3.

2.1. More Qualitative Results on Dynamic Recon-
struction and Future States Prediction

As illustrated in Fig. 3 and Fig. 4, our model demonstrates
remarkable physics-aware dynamic reconstruction quality
compared to existing methods [2, 5, 8] that suffer from re-
constructing blurry textures and incorrect dynamics due to
the use of dynamic representations and symplectic solver.
This is further evidenced by real-world test cases presented
in Fig. 5, where the reconstruction results of the SOTA
method Spring-Gaus [8] collapses when hitting the ground
plane, while ours successfully capture the physical dynam-
ics and produce higher realistic results.

2.2. Evaluation on Novel View Synthesis
We further evaluate the performance of our method on novel
view synthesis by randomly sampling 6 novel views for
each synthetic test case and evaluate the dynamic recon-
struction performance among our method and baselines. We
show qualitative results in Fig. 6 and quantitative results in
Tab. 3, where our method consistently outperforms other
models.

2.3. Evaluation on Physical Parameters Estimation
Next, we evaluate the Mean Absolute Error (MAE) on the
estimated log(E) and ν in the Neo-Hookean elastic model
used by PAC-NeRF [5], GIC [2] and our method. As shown
in Tab. 4, our method outperforms all the other approaches
in most cases while showing its competitive performance on
the remaining samples, which validates the effectiveness of
our model on physical property estimation.

3. Generalization Capability
We provide more simulation results on changed materials in
Sec. 3.1 and provide additional simulation results on differ-
ent boundary conditions in Sec. 3.2.

3.1. Generalized to Different Materials
Although our method mainly focuses on reconstructing
elastic objects in this paper, our framework can be gen-
eralized to materials characterized by various constitutive
models. Here, we show simulation results regarding three
different materials: Elasticity, Plasticine, and Sand follow-
ing [2, 5]. The qualitative results are shown in Fig. 7, where
different materials are simulated precisely as our method is
combined with different constitutive models effectively.

In order to compute the potential energy Epotential for
simulation, we derive the corresponding energy density
function Ψ(F) for each constitutive model below.

Elasticity. The energy density function can be formulated
as

Ψ(F) =
µ

2
[tr(F⊤F)− d]− µ ln(J) +

λ

2
ln2(J) (1)

where d = 3 is the space dimension, F is the deformation
gradient and J is the determinant of F, µ and λ are Lamé
parameters related to Young’s modulus E and Poisson’s ra-
tio ν:

µ =
E

2(1 + ν)
λ =

Eν

(1 + ν)(1− 2ν)
(2)

Plasticine Plasticine material is modeled with a combi-
nation of Saint Venant-Kirchhoff Model (StVK) and von
Mises return mapping function. The energy density func-
tion of StVK can be formulated as

Ψ(F) = µ[tr(G2)] +
λ

2
[tr2(G)] (3)

where G = 1
2 (F

⊤F−d) is the Green strain. The von-Mises
return mapping function projects the deformation gradient
back onto the boundary of the elastic region according to
the von-Mises yielding condition. The mapping function
can be formulated as

Z(F) =

{
F δγ ≤ 0
U exp(ϵ− δγ ϵ̂

∥ϵ̂∥)V
⊤ otherwise

(4)

where F = UΣV⊤ is the singular value decomposition
(SVD) of F, ϵ = log(Σ) is the Hencky strain, ϵ̂ = ϵ −
ϵ̄ is the normalized Hencky strain and δγ = ∥ϵ̂∥ − τY

2µ is
von-Mises yielding condition with the yield stress τY as a
physical parameter.

Sand Similar to the Plasticine material, we also use StVK
as the constitutive model and apply its energy density func-
tion to the Sand material. The difference is that we use
Drucker-Prager yield criteria instead of von-Mises yield cri-
teria. The mapping function can be formulated as

Z(F) =


UV⊤ tr(ϵ) > 0
F δγ ≤ 0, tr(ϵ) ≤ 0
U exp(ϵ− δγ ϵ̂

∥ϵ̂∥)V
⊤ otherwise

(5)
where δγ = ∥ϵ̂∥F + α (dλ+2µ)tr(ϵ)

2µ is the yield stress, α =√
2
3

2 sin θf
3−sin θf

and θf is the friction angle.

3.2. Generalized to Complex Boundary Conditions
In this section, we demonstrate that the reconstruction re-
sults of our method, Vid2Sim, integrate seamlessly into the
simulation of various animations under complex boundary
conditions. Two examples are presented in Fig. 8, highlight-
ing Vid2Sim’s ability to generate high-quality animations
across diverse boundary scenarios.

Dynamic Reconstruction Dynamic ReconstructionFuture State Future State

Spring-GS

GIC

PAC-NeRF

Reference

Ours (Full)

Ours (Stage I)

Spring-GS

GIC

PAC-NeRF

Reference

Ours (Full)

Ours (Stage I)

Dynamic Reconstruction Dynamic ReconstructionFuture State Future State

Figure 3. More dynamic reconstruction results from the input videos.

Dynamic Reconstruction Dynamic ReconstructionFuture State Future State

Spring-GS

GIC

PAC-NeRF

Reference

Ours (Full)

Ours (Stage I)

Spring-GS

GIC

PAC-NeRF

Reference

Ours (Full)

Ours (Stage I)

Dynamic Reconstruction Dynamic ReconstructionFuture State Future State

Figure 4. More dynamic reconstruction results from the input videos.

Spring-GS

Ours

Reference

Spring-GS

Ours

Reference

Figure 5. More dynamic reconstruction results from real-world input videos.

Dynamic Reconstruction

Reference

Ours (Full)

Dynamic Reconstruction

Reference

Ours (Full)

Reference

Ours (Full)

Reference

Ours (Full)

Reference

Ours (Full)

Reference

Ours (Full)

Dynamic Reconstruction Dynamic Reconstruction

Figure 6. Novel view synthesis of the dynamic reconstruction results.

Sand

Plasticine

Elastic (Soft)

Elastic (Stiff)

Figure 7. Simulation with different materials. We use E = 107, ν = 0.49 for the stiff elastic and E = 8000, ν = 0.4 for the soft elastic.
In Plasticine material τY is set to 500 and in Sand material θf is set to 10◦.

(a) A bus slides at a moving floor.

(b) Blocks drop on the balls.

Figure 8. Simulation results based on different boundary conditions.

References
[1] Noam Aigerman, Kunal Gupta, Vladimir G Kim, Siddhartha

Chaudhuri, Jun Saito, and Thibault Groueix. Neural jacobian
fields: Learning intrinsic mappings of arbitrary meshes. arXiv
preprint arXiv:2205.02904, 2022. 1

[2] Junhao Cai, Yuji Yang, Weihao Yuan, Yisheng He, Zilong
Dong, Liefeng Bo, Hui Cheng, and Qifeng Chen. Gaussian-
informed continuum for physical property identification and
simulation. arXiv preprint arXiv:2406.14927, 2024. 3

[3] Djork-Arné Clevert. Fast and accurate deep network learn-
ing by exponential linear units (elus). arXiv preprint
arXiv:1511.07289, 2015. 1

[4] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units
(gelus). arXiv preprint arXiv:1606.08415, 2016. 1

[5] Xuan Li, Yi-Ling Qiao, Peter Yichen Chen, Krishna Murthy
Jatavallabhula, Ming Lin, Chenfanfu Jiang, and Chuang
Gan. Pac-nerf: Physics augmented continuum neural radi-
ance fields for geometry-agnostic system ident ification. arXiv
preprint arXiv:2303.05512, 2023. 3

[6] Vismay Modi, Nicholas Sharp, Or Perel, Shinjiro Sueda, and
David IW Levin. Simplicits: Mesh-free, geometry-agnostic
elastic simulation. ACM Transactions on Graphics (TOG), 43
(4):1–11, 2024. 1, 2

[7] Zhan Tong, Yibing Song, Jue Wang, and Limin Wang. Video-
mae: Masked autoencoders are data-efficient learners for self-
supervised video pre-training. Advances in neural information
processing systems, 35:10078–10093, 2022. 1

[8] Licheng Zhong, Hong-Xing Yu, Jiajun Wu, and Yunzhu Li.
Reconstruction and simulation of elastic objects with spring-
mass 3d gaussians. In European Conference on Computer
Vision, pages 407–423. Springer, 2025. 3

	More Implementation Details
	Large Video Vision Transformer
	LBS and Jacobian Network
	Boundary Condition Implementation

	More Results on Dynamic Reconstruction
	More Qualitative Results on Dynamic Reconstruction and Future States Prediction
	Evaluation on Novel View Synthesis
	Evaluation on Physical Parameters Estimation

	Generalization Capability
	Generalized to Different Materials
	Generalized to Complex Boundary Conditions

