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Supplementary Material

A. Supplementary Video

We include a supplementary video showcasing an overview
of our framework, VidBot, along with demonstrations of
various real-world robot manipulation tasks.

B. Diffusion Models Formulation

B.1. Denoising Prediction

As our denoising network learns a conditional distribution,
hence Eqn. 4 will be re-written as:

po(THHTR) = N(#H 5 g (7, k, 0), Bi),

. K (12)
ps(TH5) = p(ri) [T o (71175,
k=1

where u¢(7k, k,0) is obtained through the denoising neu-
ral network, we denote it as ,uk for simplicity, and ¥y, is
from a fixed scheduler, o is the task observations we intro-
duced in the main paper.

Following Eqn. 12, we need to acquire " so that 7571
could be sampled from N (7571; uy (7%, k, 0), =1 ). As our
denoising network directly predicts the unnoised trajectory
79, so we follow the scheme shown in [67] to acquire p*:

X 1- oy
b = VO 15k7__o+ Var(1—-ayg 1)7_k

13
1-ag 1-ay (13)

)

where [ is the variance following a cosine schedule
[67], g = 1 = Bg, i = [T5g 5.

Moreover, we can retrieve the added noise €* in each
step k as:
RV LRV e
N T (14)
€ = —

V1-ay ’

where €* ~ N(0,1).

We can leverage €* to conduct a classifier-free diffusion
guidance strategy [36] to acquire the trajectory outputs dur-
ing test time.

B.2. Classifier-free Diffusion
k

With a slight abuse of notation, we rewrite €” as
€4(T",k, 0), as we have shown in Eqn. 13 and Eqn. 14 that
€” can be recovered from denoising network’s output differ-
ently. Hence, €* can also be treated as the conditional pre-
diction. We also acquire the unconditional prediction from

the network by dropping the o, i.e., €5(7*, k). Hence, fol-
lowing the classifier-free diffusion guidance strategy from
[36], we acquire the final predictions of the €*:

ék :€¢(Tk7k»0)+w(6¢(7—k7kﬂo)_€¢(7-k7k)) (15)

w is used to balance the strength between conditional and
unconditional sampling. This strategy has been shown to
improve the diversity of the sampled results and capture the
underlying distribution of the training data [80], benefiting
the cost-guided trajectory generation during the test time.

C. Implementation Details
C.1. 3D Affordance Data Extraction Details

Here, we showcase the implementation details of the 3D
affordance data extraction pipeline. =~ We leverage the
EpicKitchens-100 Videos dataset [20] to showcase the ef-
fectiveness of our pipeline. This dataset comprises hun-
dreds of hours of video recording in which humans perform
everyday household skills in diverse kitchen environments.
This dataset is in an in-the-wild setting, as no ground-truth
3D information like depth or pose is accessible. It’s particu-
larly worth noting that this dataset is not collected for robot
learning tasks.

To obtain each 3D affordance label sample, we work
with video clips with narration like Open the cupboard or
Wipe the counter as shown in Fig. 2, which provide us with
an image sequence {I,, ..., 17} and language description .
We use the pre-computed SfM results from [89] to obtain
camera intrinsics K, per-frame’s pose {Twc,,..., Twcy }
and sparse landmarks {wli,...,wln,} expressed in the
world frame. The dataset also provides 2D bounding boxes
of the hands and the in-contact objects acquired using [84].
We leverage [108] to acquire the full hands’ masks and use
the object’s bounding box to prompt SAM [48] to acquire
objects’ masks, i.e., {M}, ..., ML}, {M3, ..., M5}.

Though the language description is manually provided
along with the dataset, LLM like [79] has shown to be
highly effective in automating the video clip retrieval and
narration generation process, as demonstrated in [71]. Since
automating the language description generation process is
not the focus and contribution of our work, we leave it for
future work.

Trajectory extraction. To optimize the Eqn. 1, we
first collect the scale offset value of each frame computed
by comparing the median depth of all valid projected land-
marks in the camera frame and the median value of their



corresponding predicted metric depth. We then choose the
median value from the collected scale offset values to ini-
tialize s,. We leverage an Adam optimizer with a learning
rate of 0.05 and optimize this loss term for 10 iterations.

For the Eqn. 2, we initialize each frame’s pose using the
pre-computed SfM results and its scale using the optimized
global scale value s,. We leverage an Adam optimizer with
a learning rate of 0.1 for scale and a learning rate of 0.05 for
pose. We use the continuous representation [111] to param-
eterize rotation. They are optimized for 50 iterations.

After optimization, we obtain each frame’s hand center
point and transform it to the first frame with the optimized
poses and scales to compute the interaction trajectory 7. As
these trajectory waypoints are discrete, we fit a spline curve
to these points and then sample 80 points uniformly along
the curve to obtain the final dense trajectory. We also adopt
the Savitzky—Golay filters [82] to further smooth the trajec-
tory. We finally obtained around 50k training samples. Fig.
11 demonstrates more examples of our extracted training
data.

Contact points extraction. We uniformly downsample
points from the in-contact hand in the first frame to acquire
contact points ¢ and project them to the image plane, then
fita GMM to the pixel coordinates with 4 clusters. We then
center a Gaussian distribution over each cluster center to
acquire the contact heatmaps. We include an auxiliary vec-
tor field label to supervise the contact predictor. The vector
field labels are computed using per-pixel directions point-
ing to each cluster center, which yields 4 vector field labels
for each training sample. Fig. 12 demonstrates the contact
heatmap and the vector fields pointing to each cluster center.

Goal points extraction. Similar to contact points ex-
traction, we project the goal points uniformly downsampled
from the hand to the first frame and center one Gaussian
distribution to the points. Note that we only have one clus-
ter center; hence, we only need to compute one vector field
label. Fig. 13 demonstrates the goal heatmap and the asso-
ciated vector field.
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Figure 7. Illustration of conditional feature extraction for the goal
predictor and the contact predictor.

C.2. Network Architecture

Here, we detail the architectural design for each model.

Goal predictor architecture. Our goal predictor fol-
lows a similar UNet architecture as [37]. It takes a 4-
channel input with a resolution of 256 x448; the first 3 chan-
nels are RGB values, and the last is filled with the median
depth value of the object of interest. The goal encoder has
5 convolutional residual blocks that down-sample the res-
olution by a factor of 2 between layers, and self-attention
blocks are applied between the convolutional blocks to the
global context feature z&¥ with size being the 1/16 of the
original resolution, yielding dimension of 512. The bound-
ing box positional feature zZ*"' has a dimension of 128 after
being passed to an MLP layer. The language feature z, has
a dimension of 512 after being passed to the frozen CLIP
model [76] and an MLP layer. We apply Rol Pooling on the
global context feature &, followed by average pooing, to
obtain the object feature z&°, yielding a dimension of 512
as well; we further pass it to an MLP layer as well, without
changing its dimension. We obtain the conditional feature,
78 = {zﬁoal,zﬁoal,zl} with dimension of 1152. We then
fuse the conditional feature z&° to the visual context fea-
ture z2°" using a Perceiver module [40]. Fig. 7 illustrates
how we obtain the conditional feature.

Finally, a symmetric decoder is applied to up-sample the
fused context feature to the inputs’ resolution, which gives
3 channel outputs, with the first channel being the predicted
goal probabilities and the rest being the auxiliary vector
field values. To predict the depth value of the goal points,
we extract the language feature of the verbs of the language
instructions (e.g., “open,” “pick-up”’) and apply another Per-
ceiver module [40] to fuse it to the global context feature.
We further pass the fused feature to a block with 3 trans-
former encoder layers possessing 4 heads and a feedforward
dimension of 512, followed by an MLP layer to acquire the
goal depth value.

Contact predictor architecture. The contact predictor
takes an object color image with a resolution of 256 x 256
as inputs and outputs 9-channel predictions, with the first
channel being the predicted contact probabilities and the
rest being the 4 vector fields as auxiliary predictions (each
vector field has two channels). We leverage a ResNet50
[35] encoder as our contact encoder, which provides fea-
tures with dimensions of 64, 256, 512, 1024, and 2048. The
bottleneck feature has a dimension of 2048. We first pass it
to an MLP layer to acquire visual features with a dimension
of 512; we also pass the language feature to an MLP so that
it has a dimension of 512. We then fuse the language feature
to the visual feature using a Perceiver module [40]. Fig. 7
illustrates how we obtain the conditional feature.

After the feature fusion, we project the fused latent fea-
ture back to the dimension of 2048 with a block comprising
one transformer encoder layer with 4 heads and a feedfor-



ward dimension of 512 and an MLP layer. We repeatedly
perform skip connection, convolution, and up-sampling on
the feature map during decoding process so that the out-
putted result reaches the input color’s resolution.

Fine affordance predictor architecture. As shown in
Fig. 3, we apply sinusoidal positional encoding to the de-
noising step k, goal point g with the highest probability and
the contact point ¢ with the highest probability, yielding fea-
ture with dimensions of 32, 48, 48. The color feature of the
object of interest, z2m, extracted using ViT-based feature
extractor [10], has a dimension of 256. The language fea-
ture is also 256-dimensional, achieved through a projection
layer. This projection layer consists of a transformer en-
coder layer with 4 heads and a feedforward dimension of
512, together with a final MLP layer that projects the 512-
dimensional language feature down to 256 dimensions. The
3D-UNet TSDF feature extractor consists of three consec-
utive blocks comprising 3D convolution, ReLU [66], and
GroupNorm [97] layers to produce the TSDF feature grids
with dimensions of 64. Hence, this yields the conditional
feature o = {PE(g), PE(€), Proj(z;), 2™} with a dimen-
sion of 608; the denoising inputs x* = {7%, f¥} fed to 7
with a dimension of H x 67, H = 80 being the trajectory
horizon. The encoded denoising step feature PE(k) has a
feature dimension of 32.

In the 1D U-Net Denoiser, we first concatenate the con-
ditional feature o with the denoising step feature PE(k) to
form one conditional feature, which we then fuse with the
denoising input x* (the trajectory state) using a Perceiver
module [40]. Given the conditional feature o, the step fea-
ture PE(k), and the denoising inputs x* after Perceiver fu-
sion, we adopt a 1D UNet similar to [80] with temporal
convolutions over the trajectory horizon dimension. The
temporal dimension is down-sampled by a factor of 2 be-
tween layers. Conversely, in the decoding section, a 2x up-
sampling is applied. The denoiser encoder has four convo-
lutional layers with output dimensions of 32, 64, 128, and
256, where each layer has 2 residual blocks. Fig. 8 illus-
trates the architecture of one single residual block.
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Figure 8. Architecture illustration of one residual block in the de-
noiser network.

C.3. Training Details

Here, we detail the training protocols for each model of our
affordance prediction pipeline.

Goal predictor training. We train the goal predictor
network for 30k iterations using Adam optimizer [47] with
a learning rate le-4, and batch size 12. We set A\g = 1, A\, =
0.1.

Contact predictor training. We train the contact pre-
dictor network for 30k iterations using Adam optimizer [47]
with a learning rate 5e-5, and batch size 8. We set A\, = 0.1.

Fine affordance predictor training. We train the fine
affordance predictor network for 30k iterations using Adam
optimizer [47] with a learning rate le-4, and batch size 8.
Note that we simultaneously train both a conditional de-
noising network and an unconditional denoising network,
so we randomly drop the goal point, language, and object
color with a probability of 0.1. For the dropping operation,
we set the goal point to be (-1e3, -1e3, -1e3), the language
to be null (), and the object color to a gray image filled by
0.5.

Vector field regression loss. We include an auxiliary
vector field regression loss L, to train goal predictor and
contact predictor as introduced in Eqn. 9 and Eqn. 10. As
introduced in Section C.1, we compute the ground-truth
vector fields from the per-pixel direction pointing to the cen-
ter of each cluster \7", where c is the cluster index, the sec-
ond rows in Fig. 13 and Fig. 12 provide examples of the
ground-truth vector fields.

24 c 2
Ly=3ve-vel, (16)

where V¢ are the predicted results from the contact predic-
tor or the goal predictor for the vector field corresponding
to the c—th cluster.

Section E provides more detailed ablation experiments
to showcase the necessity of introduing this loss term for
the goal predictor and the contact predictor.

C.4. Inference Details

Here, we provide the inference details for each module
within our affordance prediction pipeline.

Open-set object detection. We combine off-the-shelf
GroundingDINO [56] and EfficientSAM [101] to acquire
the 2D bounding box and foreground mask of the object of
interest given language inputs, which will be used to acquire
the masked object color image passed to the contact pre-
dictor and sample object points for the collision-avoidance
guidance.

Goal predictor inference. Given the predicted goal
probabilities from the goal predictor, we first select the pixel
coordinates with top 5% predicted probabilities. We then
fit a Gaussian model to the sampled pixel coordinates. We
then sample 100 coordinates from the Gaussian model and



lift them to 3D using the predicted goal depth. These goal
point samples will be used for J;.

Contact predictor inference. Given the predicted con-
tact probabilities from the contact predictor, we first select
the pixel coordinates with top 5% predicted probabilities.
We fit a GMM model with & = 4 to the sampled pixel co-
ordinates. We then sample 100 coordinates from the GMM
model and lift them to 3D using the queried depth from the
cropped object depth. We additionally estimate the contact
normal n used for 7, from the sampled contact points.

Fine affordance predictor inference. We leverage the
classifier-free diffusion strategy as shown in Eqn. 15 to
acquire the predictions. During the test time, we set w
to be —0.7 and generated 40 trajectories in parallel. For
the strength of each guidance term, we set A, = 100, \; =
200, A, = 200 for the articulated objects (e.g., cabinets,
drawers, dishwashers), and change A, = 10 for the portable
objects (e.g., mugs, kettles, cans). For the collision-
avoidance guidance 7., we sample 1024 points from the ob-
ject surface if it’s portable and 1024 from the agent gripper.
Hence N, = 2048 for the portable objects, and N, = 1024
for the articulated objects. The trajectories will be ranked
using the final guidance cost J. We further smooth the fi-
nal trajectories using the Savitzky-Golay filter [82] for robot
deployments.

C.5. Robot Actions from Affordance

In the simulator, we use GraspNet [25] to initialize grasping
poses and compute the end-effector poses such that the con-
tact point lies between the fingers, then select the one with
least collision with the scene. For pre-grasp actions, we
use cuRobo library [88] to plan a path to reach the selected
grasping pose and close the gripper upon reaching. Dur-
ing the interaction, we maintain the orientation constant and
follow the interaction trajectory, whereby the simulator’s
position controller uses Inverse Kinematics (IK) to com-
pute joint configurations. For real robots, we follow similar
principles, but use their respective API calls for pre-grasp
action generation, and respective controllers. To enhance
stability during real-world interaction trajectory following,
the gripper orientation is adjusted to maintain a constant an-
gle along the trajectory.

To control the two real robots, we treat Stretch 3’s base
as one prismatic joint along an additional dimension when
implementing our own IK solver to increase its reachabil-
ity. Spot’s own whole-body controller adjusts its base while
reaching the given end-effector pose for stability.

D. Comparison to Recent Vision-Language-
Action (VLA) Models

We add further discussion about recent representative VLA
works: GR-2 [12], mo [9] and RDT [57].

Teleoperated robot data is intrinsically directly ac-
tionable — but embodiment-specific and extremely labor-
intensive to collect. In-the-wild human videos provide
richer scene contexts but don’t possess actionable data. Ac-
cordingly, GR-2 [12] is pre-trained on human videos (and
a few robot videos) by predicting future images rather than
actionable trajectories, while 7y [9] and RDT [57] are pre-
trained on teleoperated data only. Our key advantages are a
scalable approach to extract agent-agnostic actionable infor-
mation, i.e., the 3D affordance trajectories, from in-the-wild
human videos, plus a learned affordance model, equipped
with test-time guidance to enhance generalization. We ad-
ditionally benchmark against it, by fine-tuning their model
strictly following their provided recipe. The results are
72.1% v.s. 88.2% (Ours). We hypothesize 2 potential rea-
sons for RDT: 1) not properly harnessing geometric cues
from depth, while we exploit them for test-time guidance;
2) directly inferring actions from vision-language observa-
tions is challenging [59, 98, 102], but we address this with
a hierarchical model.

E. Additional Experiments

Here, we provide additional ablation experiments to vali-
date the necessity of several architecture design strategies
for our network.

E.1. Real Robot Experiments

‘RTOl RT02 RTO03 RT04 RTO5 RT06 RTO07 RT08 RTO09 RT10 RTll‘AVg.
Ours | 5/5 2/5 3/5 4/5 5/5 4/5 4/5 4/5 5/5 4/5 4/5 | 80.0

Table 4. Manipulation results on 11 real-world tasks across 2
robotic platforms evaluated on success rate (%). Each symbol de-
notes an ablation task: RT01: Pull drawer, RT02: Open cabinet,
RTO03: Take tissue, RT04: Drop paper ball, RT05: Close cup-
board, RT06: Open right-side cabinet, RT07: Take bag, RT08:
Push drawer, RT09: Close cabinet, RT10: Pick up toy, RT11:
Press button. RTO1 - RT07 are conducted by Hello Robot Stretch
3, and RT08 - RT11 are conducted by the Boston Dynamics Spot
Robot.

The quantitative results of the real robot experiments
are shown in Table. 4. These results further confirm the
embodiment-agnostic nature and zero-shot transferability
of our framework toward new scenarios.

E.2. Ablation Studies on Trajectory Accuracy

We randomly sampled 120 video sequences from the
HOI4D dataset [58] to analyze the impact of each module.
Though more restricted to in-lab settings compared to the
Epic Kitchens dataset [20] we used, this is the most similar
dataset we know that provides GT hand box, mask, camera
poses and depth to recover the GT affordance trajectory. We
use the depth predictor, SfM system, hand-object detection



| s01 s02 s03 sS04 sS05
RMSE (m) | 0.018 0.021 0.058 0.120 0.082

Table 5. Affordance trajectory accuracy. We ablate with 5 vari-
ants: SO01 all GT but hand box predicted, S02 all GT but hand
mask predicted, S03 all GT but depth predicted, S04 all predicted
with scale optimization for SfM poses (Eqn. 1), S05 adding pose
refinement (Eqn. 2) to S4.

and segmentation models for each video to obtain the neces-
sary data for trajectory extraction. Note that raw SfM poses
cannot be used directly as they are scale-unaware. We ablate
with 5 variants: S01 all GT but hand box predicted, S02
all GT but hand mask predicted, S03 all GT but depth pre-
dicted, S04 all predicted with scale optimization for StM
poses (Eqn. 1), S05 adding pose refinement (Eqn. 2) to S4.
The results are shown in Table. 5. The hand box predic-
tion and mask segmentation have marginal impacts (S1 and
S2) as they are less involved in the reconstruction of the
3D hand trajectory. S3 acts as our potential upper bound as
it has GT camera poses. S4 shows our optimization term
recovers the metric scale. Using our formulated geomet-
ric constraints, S5 further improves accuracy. We empha-
size the importance of designing our affordance acquisition
pipeline using RGB-only videos due to the abundance of
such training data on the web. Note during deployment, our
predicted trajectories are relative to accurate (sensed) depth;
and test-time guidance using depth cues also increases the
reliability.

E.3. Ablation Studies on Goal Predictor

|ATO1 ATO2 ATO03 ATO4 ATO5 ATO06|Avg.
Ours [Full Model]| 93.3 66.7 80.0 86.7 86.7 100.0| 85.6

w/o vector field loss [GV1]| 66.7 66.7 100.0 60.0 73.3 100.0| 77.8
w/o box condition [GV2]| 73.3 333 933 86.7 80.0 66.7 | 72.2

w/o obj condition [GV3]| 80.0 66.7 80.0 86.7 80.0 533|744
w/o language condition [GV4]| 33.3 26.7 733 66.7 86.7 53.3 | 56.7

Table 6. Ablation results for goal predictor design on 6 selected
tasks evaluated on success rate (%) . Each symbol denotes an abla-
tion task: AT01: Close slide cabinet, AT02: Open hinge cabinet,
ATO03: Open microwave, AT04: Pull drawer, AT05: Open dish-
washer. AT06: Pick up can from clutter.

As shown in Table. 6, we have four different model vari-
ants validated on the selected manipulation tasks for abla-
tion studies. For GV1, we disable the vector field regression
for the network, and thereby, it’s trained without auxiliary
vector field loss £,. For GV2 - GV3, we drop different con-
ditioning modalities, i.e., bounding box position features,
object features, or language features.

We can first observe that the vector field as an auxiliary
prediction can improve the success rate by 7.8% (GV1),
demonstrating its effectiveness by “forcing” the goal predic-

tor to estimate more distinctive goal configurations that are
most possible to execute. Both bounding box conditioning
((GV2)) and object feature conditioning ((GV3)) are use-
ful to let the network yield more accurate goals, hence im-
proving the task success rate through multi-goal guidance,
which is the most important guidance term, as shown in Ta-
ble. 6. Language conditioning is a critical factor in our
approach. Without it, the predicted goal points often extend
beyond the contact points, e.g., when given task instructions
like "pick up the cans,’ the interaction trajectories condi-
tioned on the inferred goal points are associated with plac-
ing actions. This mismatch leads to a drastic performance
drop of nearly 30% (see GV4).

E.4. Ablation Studies on Contact Predictor

| NSSt KLD| SIMf
Ours [Full Model] | 1.856 2.265 0.169

w/o vector field loss [CV1] | 1.686 2.343 0.137
w/o language condition [CV2] | 1.818 2.283 0.140

Table 7. Ablation results for contact predictor using samples from
HANDAL dataset [33]. (1 }: higher/lower is better.)

The ablation for the contact predictor is performed us-
ing commonly used metrics in the field for affordance pre-
diction: Normalized Scanpath Saliency (NSS), Similarity
(SIM), and Kullback-Leibler Divergence (KLD) to compare
the distributions of the predicted contact regions and their
ground truth [55, 56]. As shown in Table. 7, we validate
model variants’ performance on randomly selected samples
from the HANDAL dataset [33]. Like ablation studies on
goal predictor, CV1 is a model trained without vector field
loss, and CV2 is a model trained without language condi-
tioning.

From CV1, we see vector field loss is useful for contact
affordance predictions. This is expected as we noticed some
contact training samples could fail to inpaint human hands
that occlude the contact regions. The vector field loss could
mitigate the “occlusion” issue with dense per-pixel voting
hints for the contact regions. The variant CV2 also demon-
strates the effectiveness of language conditioning.

E.5. Ablation Studies on Fine Affordance Predictor

Though guidance provided by the cost functions during the
test time has shown to be a crucial component in boosting
the success of our trained fine affordance model, we still
need to ensure the trained model can accurately capture the
underlying distributions of the training data extracted from
human videos. We hence set up a baseline with w = 0 that
generates trajectories without any guidance terms (Ours
[No Guidance]). We verify the efficacy of conditioning the
goal point (TV1), contact point (TV2), or the TSDF map
(TV3), with results shown in Table. 8.



‘ATOl AT02 AT03 AT04 ATOS ATOG‘Avg.
Ours [No Guidance]| 73.3 60.0 60.0 933 267 80.0 | 65.6

w/o goal condition [TV1]| 0.0 333 533 46.7 6.7 100.0| 40.0
w/o contact condition [TV2]| 73.3 40.0 73.3 93.3 40.0 60.0 | 63.3

w/o TSDF condition [TV3]| 67.7 60.0 60.0 86.7 33.3 60.0 | 61.1

Table 8. Additional ablation results for fine affordance predictor
design on 6 selected tasks evaluated on success rate (%). Each
symbol denotes an ablation task: ATO01: Close slide cabinet,
ATO02: Open hinge cabinet, AT03: Open microwave, AT04: Pull
drawer, AT05: Open dishwasher. AT06: Pick up can from clutter.

As quantitatively shown by variant TV1, goal condition-
ing plays a crucial role in inferring plausible interaction
trajectories with a performance decrease by 15.6%, again
confirming the necessity of coarse affordance prediction as
shown in Table. 2. Contact points conditioning (TV2) has
less impact but is still helpful in improving performance.
One subtle effect we observe is that the generated interac-
tions from TV2 has less awareness of collision avoidance.
We explain it because no contact conditioning could lead
to freely moving trajectories within the scene map without
awareness of the absolute collision state of the trajectories.
TSDF conditioning could implicitly provide scene collision
cues to the fine affordance predictor, providing it bias to
generate collision-free trajectories, whose effectiveness is
again showcased particularly for the portable object manip-
ulation task with an increase of 20.0% (AT06).

E.6. Results on Robot Learning Applications

We provide detailed results of the visual goal-reaching and
exploration tasks mentioned in Section. 4.4. As demon-
strated in Fig. 9 and Fig. 10, our model outperforms com-
petitors in most of the tasks.

F. Additional Qualitative Results

Fig. 14 provides the contact prediction on samples from
the HANDAL dataset [33]. Fig. 15 provides the predicted
affordance by our method for in-the-wild RGB-D images
and instructions. Fig. 16 provides an intuitive visual com-
parison illustrating the effect of each guidance term. No-
tably, collision-avoidance guidance enables the synthesis
of safer collision-free trajectories, preventing the trajectory
from colliding with the scene. Multi-goal guidance gen-
erates more accurate trajectories, particularly for objects
like cabinets requiring circular interaction motions, while
contact-normal guidance contributes to smoother trajectory
generation.



Visual Goal-Reaching: Open hinge cabinet

Visual Goal-Reaching: Close slide cabinet
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Figure 9. Detailed results of visual goal-reaching task.
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Figure 10. Detailed results of exploration task.

Exploration: Open hinge cabinet
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Figure 11. Example training samples to train fine affordance predictor.
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Figure 12. Example training samples to train contact predictor.
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Figure 13. Example training samples to train goal predictor.

Figure 14. Contact predictions on samples from HANDAL dataset [33].
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Figure 15. Our predicted 3D Affordance prediction (contact points and interaction trajectories) of in-the-wild data. For trajectories, darker
color shades a lower final cost, yielding a higher rank for execution.
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Figure 16. Qualitative comparison showcasing the impace of different guidance terms.
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