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A.1. Implementation Details

DAC-VAE. We implemented and trained a modified ver-
sion of the Descript Audio Codec (DAC) [52] using a varia-
tional autoencoder (VAE) [49]. In this approach, we replaced
the residual vector quantizer (RVQ) with a VAE objective
to encode continuous latents, enabling diffusion models to
operate on continuous representations instead of discrete
tokens. Our DAC-VAE was trained on audio waveforms
at various sampling rates, allowing us to encode a 48kHz
waveform into latents at a 40Hz sampling rate, with a feature
dimension of 64. We train our DAC-VAE model on a variety
of proprietary and licensed data spanning speech, music, and
everyday sounds.

DiT architecture. Our DiT model has 12 layers, each with
a hidden dimension of 1024, 8 attention heads, and an FFN
(Feed-Forward Network) dimension of 3072, totaling 332M
parameters. For the audio latents, we use an MLP (Multi-
Layer Perceptron) to project them into 512-dimensional fea-
tures. A separate MLP maps encoded visual features to 512
dimensions, followed by nearest-neighbor interpolation to
upsample them fivefold (from 8Hz to 40Hz). Finally, we
concatenate the audio and video features along the channel
dimension to form 1024-dimensional inputs, which are then
fed into the transformer.

Similar to VampNet [29], we use two learnable embed-
dings to differentiate between conditional input audio latents
and noisy latents to be denoised, based on the conditional
mask. We then sum the corresponding mask embeddings to
the audio latents. During the inference, we create a condi-
tional mask to achieve audio-conditioned generation.

Training details. We use the AdamW optimizer [48, 62]
with a learning rate of 10−4 and apply a cosine decay sched-
ule. Training begins with a linear warm-up phase for the first
4K iterations, followed by 599.6K iterations. We train our
model with Exponential Moving Average (EMA) [68] with
EMA decay of 0.99. Throughout the training, we randomly
sample from combined datasets where 60% of training exam-
ples are from VGGSound and 40% from HQ-SFX. Within
VGGSound samples, 60% are dedicated to video-text-tag-to-
audio generation, the rest 40% are evenly distributed across
different dropout variants (i.e., video+tag, video+text, video-
only, text+tag, text-only, tag-only, unconditional). For HQ-
SFX samples, 60% are allocated to text-tag-to-audio gen-
eration, with the remaining cases divided as follows: 10%
for text-only, 15% for tag-only, and 15% for unconditional
audio generation.

A.2. Additional Experiments
Guidance scale ablation. We also examine the effect of
the classifier-free guidance (CFG) scale, as shown in Tab. 7.
The model shows similar performance with guidance weights
between 3.0 and 7.0. On the FAD metrics, a higher guidance
scale improves FAD@AUD but worsens FAD@VGG, sug-
gesting that the model generates examples that align more
with high-quality distributions. We use guidance scales of
3.0 and 5.0 for experiments in the main paper.

A.3. Human Studies
Videos and prompts. We handpicked 10 high-quality
videos from the VGGSound test set, choosing examples
that span a variety of categories and contain clear, easily
perceivable temporal actions. We crafted two text prompts
for each video: one matching the original category and an-
other for a different target category, shown in Tab. 6. We
then generated four 8-second samples for each video and
randomly selected one for the final evaluation in the survey.
For our model’s generation, we use the “high quality” tag
for inference.

Table 6. Audio prompts for the user studies. We note that the
prompts are paired for the same video.

Original prompt ReFoley prompt

playing cello playing erhu
bird chirping rooster crowing
dog barking playing drum
typewriter playing piano
gunshot snare drum playing
chopping wood kick drum playing
lion roaring cat meowing
squeezing toys cracking bones
playing trumpet playing saxophone
playing golf explosion

User study survey. In the survey, participants watched
and listened to 20 pairs of videos comparing our method
with FoleyCrafter [100]. We performed a forced-choice
experiment where we randomized the left-right presentation
order of the video pairs. For each video pair, participants
were asked to respond to four questions:
1. Which video’s audio best matches the sound of {audio

prompt}?
2. In which video is the timing of the audio best synchro-

nized with what you can see in the video?



Table 7. Ablation study for classifier-free guidance scale on video-to-audio generation. The best results are in bold.

Variation ImageBind ↑ CLAP ↑ AV-Sync ↓ FAD@VGG ↓ FAD@AUD ↓ KLD ↓

Ours

γ = 1.0 26.4 32.4 0.90 3.16 4.27 1.49
γ = 3.0 28.0 34.4 0.80 2.92 4.62 1.43
γ = 4.0 28.1 34.7 0.77 3.05 4.59 1.43
γ = 5.0 28.0 34.8 0.77 3.27 4.48 1.43
γ = 7.0 27.5 34.6 0.75 3.84 4.21 1.44

Figure 6. Screenshot of Foley user study. We show the screenshot from our user study survey. We show the instructions and the first two
video pair examples and associated questions.

3. Which video has audio that sounds cleaner and more high
definition? (Please ignore the type of sound and whether
it’s timed to the video, focus only on the audio quality.)

4. Assuming the video is meant to sound like {audio
prompt}, which video has the best audio overall?

The first question evaluates the semantic alignment be-
tween the generated audio and the target audio prompt, ensur-
ing that the sound matches the expected content. The second
question evaluates the temporal alignment between the audio

and video, focusing on how well the sound synchronizes
with visual cues. The third question ignores content and
timing to focus specifically on audio quality, examining as-
pects such as fidelity and production standards. Finally, the
last question offers a holistic evaluation, determining which
model produces the most effective overall audio. We show a
screenshot of our user study survey including the instruction
block, the first two video pairs, and associated questions in
Fig. 6.
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