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1. More Qualitative Results

We present more qualitative comparisons among different

approaches for static images and evaluation videos.

In-the-wild image results. Static image depth estimation

results are shown in Fig. 1. DepthCrafter [5] and Depth

Any Video [17] exhibit poor performance on oil paintings.

DepthCrafter [5] also struggles with transparent objects such

as glass and water. Compared with these methods, our model

demonstrates superior depth estimation results in complex

scenarios. Moreover, our model shows depth estimation

results for static images that are comparable to those of

Depth-Anything-V2 [18], demonstrating that we have suc-

cessfully transformed Depth-Anything-V2 into a video depth

model without compromising its spatial accuracy.
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Figure 1. Qualitative comparison for static image depth esti-

mation. We compare our model with Depth-Anything-V2 [18],

DepthCrafter [5], and Depth Any Video [17] on static image depth

estimation. Our model demonstrates visualization results compara-

ble to those of Depth-Anything-V2 [18].

Evaluation video results. We showcase five video visual-

ization results from the evaluation datasets Scannet [3] and

Bonn [10] in Fig. 2. For enhanced visualization, all predicted

video depths are aligned to the ground truth video depths

using the same method as in the evaluation. DepthCrafter [5]

exhibits depth drift in long videos, as indicated by the blue

boxes. Moreover, our model demonstrates superior depth

accuracy compared to DepthCrafter [5], as highlighted in

the red boxes.

2. Short video depth quantitative results

We compare our model with DepthCrafter [5] and Depth Any

Video [17] on the KITTI [4], Bonn [10], and Scannet [3]

datasets, with frame lengths of 110, 110, and 90, respectively,

corresponding to the settings in [5]. As shown in Tab. 1, our

model demonstrates a significant advantage of approximately

7% over both DepthCrafter [5] and Depth Any Video [17]

on the Scannet dataset [3]. On the KITTI dataset [4],

our model significantly outperforms DepthCrafter [5] by

about 7%. Additionally, our model achieves comparable

results on Bonn [10] and KITTI [4] compared to Depth Any

Video [17]. It is worth noting that the parameters of our

model and the video depth data used for training are signifi-

cantly smaller than those of DepthCrafter [5] and Depth Any

Video [17], demonstrating the effectiveness and efficiency

of our method.

3. Limitations and future work

Our model is trained primarily on publicly available video

depth datasets, which may limit its capabilities due to the

data quantity. We believe that with more data, the model’s

performance can be further improved, and the backbone

network can be unlocked for fine-tuning. Additionally, al-

though our model is significantly more computationally effi-

cient than the baselines, it still faces challenges in handling

streaming videos, which we leave as future work.

4. More Details of Pipeline

Spatiotemporal head details. Among the four temporal

layers, two are inserted after the Reassemble layers at the two

smallest resolutions, and the other two are inserted before

the last two Fusion layers.

The shape of the feature is transformed into (B ×Hf ×

Wf )×N ×C before each temporal layer and is transformed

back to (B×N)×C ×Hf ×Wf after each temporal layer.

Here, B denotes the batch size, N represents the number of

frames in the video clip, Hf and Wf are the height and width

of the feature, respectively, and C represents the number of

channels in the feature, as shown in Fig. 3

Image distillation details. We follow the approach in [18]

and use a teacher model that comprises a ViT-giant encoder

and is trained on synthetic datasets. The loss function used

for distillation is identical to the spatial loss employed for

video depth data.

Training dataset details. For video training, we utilize

four synthetic datasets with precise depth annotations: Tar-

tanAir [15], VKITTI [2], PointOdyssey [19], and IRS [13],

totally 0.55 million frames. The TartanAir [15], VKITTI [2],

PointOdyssey [19], and IRS [13] datasets contain 0.31M,
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Figure 2. Qualitative comparison for real-world long video depth estimation. We compare with Depth-Anything-V2 [18] and

DepthCrafter [5] on 500-frames videos from Scannet [3] and Bonn [10] . We show changes in color and depth over time at the vertical red

line in videos. White boxes show inconsistent estimation. Blue boxes show our algorithm has higher accuracy.

Method / Metrics Params(M) # Video Training Data(M)
KITTI(110) [4] Bonn(110) [10] Scannet(90) [3]

AbsRel (↓) δ1 (↑) AbsRel (↓) δ1 (↑) AbsRel (↓) δ1 (↑)

DepthCrafter 2156.7 10.5~40.5 0.111 0.885 0.066 0.979 0.125 0.848

DepthAnyVideo 1422.8 6 0.073 0.957 0.051 0.981 0.112 0.883

VDA-L (Ours) 381.8 0.55 0.079 0.950 0.053 0.972 0.075 0.954

Table 1. Zero-shot short video depth estimation results. We compare with DepthCrafter [5] and DepthAnyVideo [17] in short video depth

benchmark. “VDA-L” denotes our model with ViT-Large backbone. The default inference resolution of our model is set to 518 pixels on the

short side, maintaining the aspect ratio. The best and the second best results are highlighted.

0.04M, 0.1M, and 0.1M frames, respectively. Addition-

ally, 0.18 million frames from wild binocular videos labeled

with [7] are included for training. We also incorporate a

subset of real-world unlabeled datasets from [18] for single

image supervision, totaling 0.62 million frames. Notably,

we excluded 0.13M frames from PointOdyssey [19] that do

not contain background depth ground truth, resulting in our

usage of only half of the original dataset. Due to the uneven

data distribution across the four training datasets, we employ

a uniform sampler to ensure that each dataset contributes
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Figure 3. Temporal layer. The feature shape is adjusted for tempo-

ral attention.

equally during training.

Implementation Details The weights are initialized from

Depth Anything V2 [18]. Training comprises two stages. In

the first stage, synthetic and wild binocular data are used.

In the second stage, synthetic videos and unlabeled single

images are employed. Models labeled ’-Syn’ in the main

paper are exceptionally trained using synthetic videos and

unlabeled images in a single stage. Besides the loss defined

in Equation 4 of the main paper used for synthetic videos, un-

labeled single images are supervised using the same method

as described in [18]. During training, we uniformly sam-

ple video clips of 32 frames from each dataset, resize the

shorter edge of images to 518 pixels, and perform random

center cropping, resulting in training clips with a resolution

of 518× 518× 32. We use the AdamW [8] optimizer with a

cosine scheduler, setting the base learning rate to 1e−4. The

batch size is set to 16 for video frames, each with a length

of 32 frames, and 128 for image datasets. The loss weights

for the single frame loss, TGM loss, and distillation loss are

set to 1.0, 10.0, and 0.5, respectively.

5. More Details of Evaluation

Evaluation dataset details. We use a total of five datasets

for video depth evaluation: KITTI [4], Scannet [3],

Bonn [10], NYUv2 [9], and Sintel [1]. Specifically, we

use Scannet [3] and NYUv2 [9] for static indoor scenes,

Bonn [10] for dynamic indoor scenes, KITTI [4] for outdoor

scenes, and Sintel [1] for wild scenes. For NYUv2 [9], we

sample 8 videos from the original dataset, which contains

36 videos. Our evaluation comprises three different set-

tings: long videos, long videos with different frame lengths,

and short videos. For the long video evaluation, we use

all five datasets and set the maximum frame length to 500

for each video. For the evaluation of long videos with

different frame lengths, we select subsets of videos with

frame lengths greater than 500 from Scannet [3], Bonn [10],

and NYUv2 [9]. For the short video evaluation, we use

KITTI [4], Bonn [10], and Scannet [3], setting the maxi-

mum frame lengths to 110, 110, and 90, respectively, in

accordance with the settings in DepthCrafter [5]. In addi-

tion to video depth evaluation, we also assess our model’s

performance on static images. Following [18], we perform

evaluations on five image benchmarks: KITTI [4], Sintel [1],

NYUv2 [9], ETH3D [12], and DIODE [6]. To ensure a fair

comparison, all evaluation videos and images are excluded

from the training datasets.

Evaluation metric details. All video metrics we evalu-

ated are based on ground truth depth. Specifically, we use

the least squares method to compute the optimal scale and

shift to align the entire inferred video inverse depth with

the ground truth inverse depth. The aligned inferred video

inverse depth is then transformed into depth, which is subse-

quently used to compute the video metrics with the ground

truth depth. For geometric accuracy, we compute the Abso-

lute Relative Error (AbsRel) and δ1 metrics, following the

procedures outlined in [5, 18]. To assess temporal stability,

we use the Temporal Alignment Error (TAE) metric in [17],

to measure the reprojection error of the depth maps between

consecutive frames. We use Equation 1.

TAE =
1

2(N − 1)

N−1∑

k=1

AbsRel(f(x̂k
d, p

k), x̂k+1

d )+

AbsRel(f(x̂k+1

d , pk+1
−

), x̂k
d)

(1)

Here, f represents the projection function that maps the

depth x̂k
d from the k-th frame to the (k + 1)-th frame using

the transformation matrix pk. pk+1
−

is the inverse matrix for

inverse projection. N denotes the number of frames.

Baseline implementations. We obtain the inferences of

DepthCrafter [5], Depth Any Video [17], and NVDS [16]

using the respective inference code provided by the authors.

Specifically, DepthCrafter [5] employs different inference

resolutions for different datasets. Depth Any Video [17]

infers with a maximum dimension of 1024. NVDS [16]

performs inference on a video twice, with a minimum di-

mension of 384, once in the forward direction and once in

the backward direction, and computes the mean result from

these two passes. For Depth-Anything-V2 [18], we obtain

the video depth results by inferring each frame individually

with a minimum dimension of 518.

6. Applications

Dense point cloud generation. By aligning single frame

with metric depth, which can be obtained from a metric depth

model or a sparse point cloud acquired through SLAM, our

model can generate a depth point cloud for the entire en-

vironment using camera information. The generated point

cloud can then be transformed into a mesh and utilized for

3D reconstruction, AR, and VR applications. We present
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Figure 4. 3D Video Conversion. A video from the DAVIS

dataset [11] is transformed into a 3D video using our model.

a point cloud generation case in Fig. 5. Here, we sam-

ple 10 frames spanning approximately 5 seconds from the

KITTI dataset [4]. After obtaining the inferred inverse depth,

we compute the global scale and shift by aligning the first

frame with the corresponding metric inverse depth. We then

apply the affine transformation to the entire set of inverse

depth frames and convert them to depth. The final point

cloud is generated by merging the point clouds from each

frame. As shown in Fig. 5, our model generates a clean

and regular point cloud compared to DepthCrafter [5] and

Depth Any Video [17]. Point cloud generation for wild

videos is illustrated in Fig. 6. Compared to DepthCrafter [5]

and DepthAnyVideo [17], our model produces more regular

point clouds.

3D Video Conversion. Our model can be used to generate

3D videos. Compared to 3D videos generated by monocular

depth models, those produced by our video depth model ex-

hibit smoother and more consistent 3D effects. An example

is presented in Fig.4.
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Figure 5. Dense point cloud generation. We compare our model with DepthCrafter [5] and DepthAnyVideo [17] for dense point cloud

generation on the KITTI dataset [4]. Our model generates a clean and regular point cloud from multiple frames spanning approximately 5

seconds. In contrast, the point cloud generated by DepthCrafter [5] contains several obvious discontinuous layers. DepthAnyVideo [17]

produces a point cloud with numerous noisy outliers and noticeable distortion in distant views.
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Figure 6. Point cloud generation for wild videos. We compare our method with DepthCrafter [5] and DepthAnyVideo [17] using three

videos from DAVIS dataset [11]. Camera intrinsics, along with aligned scale and shift parameters, are derived from processing the first

frame of each video through MoGe [14]. Point cloud distortions are highlighted with red boxes.
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