
3D Prior is All You Need: Cross-Task Few-shot 2D Gaze Estimation

Supplementary Material

7. Summary of Evaluation Datasets
Our work conducts experiments on three datasets: MPI-

IGaze, which is also referred to as MPIIFaceGaze, EVE,

and GazeCapture. We preprocess these datasets for evalua-

tion. The dataset statistics are summarized in Table 6. No-

tably, GazeCapture includes over 1,000 subjects, making it

impractical to evaluate all subjects. Therefore, we sort all

subjects based on their identifiers, e.g., sub 00001, and se-

lect the 20 subjects in ascending order of their identifiers.

We exclude subjects with fewer than 500 images to ensure

a convincing evaluation.

Overall, under the experimental settings, our method was

evaluated on 74 subjects across three different platforms,

demonstrating its advantages and robustness.

Table 6. Dataset statistics on our experiment

Devices # Subjects # Images per subject

EVE Desktop computer 39 ∼ 1800
MPIIGaze Laptop 15 1500
GazeCapture Phone & tablet 20 ∼ 1200

Besides, we perform image normalization during data

preprocessing. The original method requires camera in-

trinsic parameters for normalization, which conflicts with

one of our motivations: enabling quick adaptation for non-

expert users. In our method, this issue is resolved by using

estimated camera intrinsic parameters. For the GazeCap-

ture dataset, we apply estimated parameters for normaliza-

tion. We do not provide detailed explanations of this in our

manuscript, as it is not a central focus of our work and can

be addressed effectively.

8. Implementation Details
Our work is primarily implemented using two libraries: Py-

Torch and PyTorch3D. Most of our modules are developed

using PyTorch, while the Rodrigues transformation is im-

plemented using PyTorch3D. The Rodrigues transformation

ensures that R ∈ SO(3), facilitating the computation of the

inverse matrix for coordinate transformations. We initial-

ize the rotation matrix R as diag(-1, 1, -1) and the trans-

lation vector t as (0, 0, 0), where the value of r could be

computed using Rodrigues formula. This represents a basic

transformation between the camera coordinate system and

the screen coordinate system, i.e., we assume that the ori-

gins of the two systems overlap, and the x-y planes of the

two systems are parallel.

This is also why we claim that the initial screen pose

happened to be same as the actual screen pose in the Gaze-

Capture dataset. The dataset collects images using mobile

devices, where the x-y planes of the embedded camera are

typically parallel to the screen. More importantly, the au-

thors of GazeCapture precisely measure the camera place-

ment and screen dimensions to define a unified prediction

space, setting the origin of the defined screen coordinate

system at the camera position. However, this setup is atypi-

cal, as manually measuring the camera placement is equiv-

alent to manually calibrate screen pose.

9. Implementation on the Real-World Device

We also evaluate our method in a real-world environment.

Specifically, we implement our method at a desktop com-

puter and invite a volunteer for testing. Our implementa-

tion is conducted on the machine equipped with an NVIDIA

RTX 3090 GPU in a Python environment. We use a 1080p

webcam to capture the face images and applied our method

to estimate the user’s 2D gaze on the screen. The experi-

mental setup is illustrated in Figure 8, with the user posi-

tioned approximately 90 cm from the camera.

Figure 8. Setup for the implementation on the real-world device.

The process involves the following steps:

1. Calibration: The volunteer is required to look at four cal-

ibration points on the screen. For each point, we collect

40 face images for model adaptation while the volunteer

focuses on each point for 1-2 seconds. We collect 40

images from each point to minimize the impact of noise

data such as blink.

2. Data Pre-Processing: From these images, we detect hu-

man face landmarks and estimate the 3D head pose to

compute the 3D face centers. Image normalization is

then applied to obtain the processed face images.

3. Model Adaptation: Using our method, we adapt the 3D

gaze estimation model for the real-world 2D gaze esti-

mation.



0 1920
0

1080

 Trajectory GT
 Our Prediction

Screen (1920 1080)

Figure 9. The visualization of our estimation in a real-world im-

plementation. The red line represents the trajectory of a moving

dot that we pursued, while the blue dots indicate our gaze predic-

tions. This result demonstrates the effectiveness of our method.

The jitter is due to various environmental and personal factors,

such as eye blinking and unstable face detection. These issues can

be easily addressed using post-processing methods.

4. Evaluation: The volunteer is instructed to continuously

focus on a moving dot. Our method estimates the gaze

trajectory from face images.

We visualize the results in Figure 9, where the red line

represents the trajectory of the moving dot, and the green

dots indicate the gaze estimation results. It is important to

note that we do not pre-calibrate the camera intrinsic ma-

trix or the screen pose. Besides, we do not apply post-

processing methods, such as blink detection or filtering, to

the estimation results. A video of the entire process is pro-

vided as supplementary material.


