
Breaking the Memory Barrier of Contrastive Loss via Tile-Based Strategy

Zesen Cheng1∗ Hang Zhang1∗ Kehan Li1∗ Sicong Leng1 Zhiqiang Hu1

Fei Wu2 Deli Zhao1 Xin Li1 Lidong Bing3

1 Alibaba Group, Hangzhou, China 2 Zhejiang University, Hangzhou, China
3 Shanda AI Research Institute

{chengzesen.czs,hang.zh,likehan.lkh,xinting.lx}@alibaba-inc.com

4 8 16 32 64 128 256 512 1024
Batch Size (k)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y 
D

el
ta

Best Batch Size Increasing with Data Scale

Peak Point

Lowest Point

CC3M CC12M Laion400M

Figure S1. Performance of ViT-B/32 across Varying Batch Sizes. Except for batch size, other experiment settings are consistent. In
Figure, the most suitable batch size is increasing with data scale.

In this document, we first analyze the training speed
of our method (§Section S1). Then we describe
the factors influencing performance when scaling batch
size (§Section S2). Finally, a description of the multilevel
and intra-gpu tile-wise global lse calculation backward pro-
cess (§Section S6) are provided.

S1. Analysis of Training Speed Efficiency

Although Inf-CL might be expected to exhibit slower per-
formance because it breaks the loss calculation to small tiles
and serially process these tiles, it achieves comparable or
better speed to previous methods, as shown in Figure 4.
This is primarily due to two factors: (1) Loss calculation
represents only a minor fraction of the total iteration time,
especially for large models, thereby exerting minimal im-
pact on the overall iteration time. (2) While Inf-CL has
similar computational complexity to standard contrastive
loss, its tiling approach could introduce some speed over-
head due to reduced parallelism. However, Inf-CL fuses

Batch 1×A800 8×A800 32×A800

Size Vanilla Inf-CL Vanilla Inf-CL Vanilla Inf-CL

32k 28.73 28.17 ↓ 0.56 6.53 5.01 ↓ 1.52 3.10 1.49 ↓ 1.61

64k - 58.50 15.85 10.56 ↓ 5.29 8.38 2.76 ↓ 5.62

128k - 156.72 - 20.71 - 5.27

256k - 332.13 - 45.98 - 11.27

Table S1. Training Speed (s) of ViT-B/32 CLIP on 1, 8, 32 × A800
for various batch sizes. “-” indicates out-of-memory error.

the operations of similarity matrix calculation and softmax,
which in regular contrastive loss require two separate com-
munications between SRAM and HBM. By merging these
into a single communication, Inf-CL effectively reduces the
I / O time, mitigating the cost of the serial tile computation.

Additionally, we have discovered that the implementa-
tion of Inf-CL for the vanilla version can be significantly ac-
celerated. According to the results in Table S1, we observe

1



Batch Size CC3M CC12M Laion400M

4k 47.60 ↑ - -

8k 51.36 ↑ 54.25 ↑ -

16k 53.01 54.90 ↑ -

32k 52.57 ↓ 56.10 63.99 ↑
64k 51.08 ↓ 55.70 ↓ 66.62 ↑

128k - 54.89 ↓ 66.77
256k - - 65.28 ↓

Table S2. The absolute accuracy of ViT B/32 LiT on ImageNet val
set using different batch sizes and different scale datasets.

that as the batch size increases, the acceleration of Inf-CL
over the vanilla implementation of contrastive learning be-
comes more pronounced. Furthermore, the acceleration im-
proves as the number of GPUs increases. This demonstrates
that our method achieves high training speed efficiency.

S2. Factors for scaling batch size

While a larger batch size is theoretically expected to im-
prove performance [1], our experimental results deviate
from this expectation. To better understand this discrep-
ancy, we analyze the factors that impact performance when
scaling up the batch size.
Hyperparameters. Although larger batch sizes provide
more diverse negative samples for contrastive learning, po-
tentially improving the embedding space, careful tuning of
hyperparameters is necessary to ensure model convergence.
Previous research indicates that when increasing batch size,
the learning rate should be scaled proportionally to maintain
a consistent parameter update norm throughout training [2].
Since a fixed learning rate is used across all experiments,
this may have contributed to the reduced performance ob-
served with larger batch sizes. Moreover, prior studies sug-
gest that large batch sizes require longer training epochs to
ensure sufficient parameter updates and avoid suboptimal
convergence [3]. Overall, the performance gains from larger
batch sizes are contingent on the careful tuning of multi-
ple hyperparameters beyond just learning rate and epochs,
highlighting the importance of comprehensive hyperparam-
eter optimization to fully exploit the benefits of scaling.
Data Scale. Increasing batch size improves the precision of
gradient estimation for the representation distribution de-
fined by the dataset [1]. Larger datasets capture real-world
distributions more accurately and thus employing a larger
batch size allows contrastive loss to generate more pre-
cise gradients, enhancing the model’s ability to learn dis-
criminative representations. As shown in Figure S1 and
Table S2, our experiments on different data scales (e.g.
CC3M, CC12M, and Laion400M) indicate that the optimal

Batch Size 4k 8k 16k 32k 64k

ViT-B/32 47.60 ↑ 51.36 ↑ 53.01 52.57 ↓ 51.08 ↓
ViT-B/16 60.49 ↑ 62.99 ↑ 64.66 ↑ 64.89 64.01 ↓

Table S3. The accuracy of ViT B/32 LiT and ViT B/16 LiT on
ImageNet val set using different batch sizes.

batch size increases with dataset size. Specifically, perfor-
mance on CC12M saturates at a batch size of 32k, whereas
Laion400M achieves saturation at a batch size of 256k.

Model Size. Our experimental results in Tab. S3 indicate
that the optimal batch size increases as the model size
grows. This could be attributed to the fact that larger mod-
els are more susceptible to noise in the gradients. Utilizing
a larger batch size helps in stabilizing the gradients during
the training of large models, thereby achieving better per-
formance.

In summary, while scaling up batch sizes is critical for
enhancing contrastive learning, our findings suggest that
performance does not improve monotonically with increas-
ing batch size. As seen in our previous experiments (Ta-
ble 3), extremely large batch sizes (e.g. 1024k) can lead
to a decrease in performance, indicating that factors such
as hyperparameter tuning, dataset scale, and model size are
among the many considerations that influence model effec-
tiveness. This highlights the need for a balanced approach
when increasing batch sizes, ensuring that optimal configu-
rations are found to fully exploit the benefits of contrastive
learning.

S3. Discussion

Although our approach draws inspiration from Ring Atten-
tion and Flash Attention, implementing inf-cl is non-trivial.
Inf-cl differs from these methods in terms of both imple-
mentation and contributions: 1). Implementations: The
mentioned methods only consider single-level tiling calcu-
lations, while we develop a novel multi-level tiling strategy
designed for contrastive learning to fit the corresponding
large-scale distributed training system. Therefore, our ap-
proach can fully utilize parallelism across multiple GPUs
and CUDA kernels to ensure efficiency while exploiting
partial serial computation on a single GPU, eventually re-
ducing memory costs to a negligible level without com-
promising processing speed. 2). Contributions: Beyond
the new tiling implementation, another significant contri-
bution is highlighting that tiling calculation can overcome
the memory bottleneck that limits batch size scaling in con-
trastive learning, further expanding the application scope of
the tile-based computing.



0 2000 4000 6000 8000
Gradient Steps

3.0

5.0

7.0

9.0

11.0
Tr

ai
ni

ng
 L

os
s

CLIP
Inf-CL

(a) CLIP vs Inf-CL (32k batch size)

0 500 1000 1500 2000
Gradient Steps

6.0

7.5

9.0

10.5

12.0

Tr
ai

ni
ng

 L
os

s

OpenCLIP
Inf-CL

(b) OpenCLIP vs Inf-CL (128k batch size)

Figure S2. Training loss curve on the Laion400M dataset. We set the same random seed to examine the loss curves when training with
different loss functions (Vanilla loss, OpenCLIP loss, Inf-CL). As shown in the figure, the loss curves are nearly indistinguishable, showing
that our Inf-CL does not impair convergence.

S4. Derivation

In this section, we provide the detailed derivation of Eq. (4):
Let lij denote the accumulated LSE value in j-th step and
other symbols be the same as in the main text, the derivation
for Eq. (4) is as follows:

lij = log

j∑
n=1

∑
k

eX
i,n
:,k = log(

j−1∑
n=1

∑
k

eX
i,n
:,k +

∑
k

eX
i,j
:,k )

= log(exp(log

j−1∑
n=1

∑
k

eX
i,n
:,k ) + exp(log

∑
k

eX
i,j
:,k ))

= log(el
i
j−1 + el

i,j

) (according to Eq. (5))

= log el
i
j−1 + log(1 + el

i,j−lij−1)

= lij−1 + log(1 + el
i,j−lij−1)

(S1)

S5. Analysis of Loss Precision Error

To check whether our Inf-CL loss affects model conver-
gence due to precision errors, we compare the loss curves of
CLIP loss, OpenCLIP loss, and Inf-CL loss with the same
random seed in Figure S2. As shown in the figure, whether
with a small batch size (32k) or a large batch size (128k),
our method shows almost no difference from the CLIP loss
and OpenCLIP loss. This demonstrates that our Inf-CL loss
significantly saves memory without affecting model conver-
gence.

Algorithm 1 Backward Process of Multi-level Tile-Wise
Global LSE Calculation
Require: Number of GPUs n, saved intermediate variables

from the forward pass: in-memory visual features Ii ∈
Rbs×c and textual features T i ∈ Rbs×c for each GPU,
global LSE vectors li ∈ Rbs .

1: Initialize vector: dIi = 0 ∈ Rbs×c, dTcache = 0 ∈
Rbs×c on each GPUi.

2: for j = 1 to n do
3: Asynchronously Text Feature Communication:
4: Each GPU sends in-memory textual feature to the

next GPU and receive the textual
feature from the previous GPU in the ring.

5: Backward Calculation:
6: Index of current text feature tile for each GPU:

k = (i+ j − 1) mod n
7: Call Algorithm 2 with (Ii, T k, li) , obtaining gra-

dients dIi
temp and dT k

temp.
8: Update gradients dIi += dIi

temp.
9: Update gradients dTcache += dT k

temp.
10: Asynchronously Gradient Communication:
11: Each GPU sends in-memory dTcache to the next

GPU in the ring.
12: Each GPU receive the gradient feature from the

previous GPU and write to dTcache.
13: end for
14: dT i = dTcache in each GPU.
15: Return the gradients dIi, dT i for each GPU.



Algorithm 2 Backward Process from of intra-GPU Tile-
Wise LSE calculation
Require: Saved intermediate variables from the forward

pass: visual features Ĩ ∈ Rb×c, textual features T̃ ∈
Rb×c, the local LSE vector l̃ ∈ Rb.
The row-wise and column-wise size of a tile: tr and tc,

1: Divide Ĩ into Ĩi, where i = 1, 2, . . . , ñr.
2: Divide T̃ into T̃ j , where j = 1, 2, . . . , ñc.
3: Divide l̃ into l̃i, where i = 1, 2, . . . , ñr.
4: Initialize gradients vectors: dĨ ∈ Rtr×c and dT̃ ∈

Rtc×c.
5: for each Ĩi do
6: Load Ĩi and l̃i from HBM to on-chip SRAM.
7: Initialize dĨi = 0 ∈ Rtr×c.
8: for j = 1 to [b//tc] do
9: Load T̃ j from HBM to on-chip SRAM.

10: On chip, compute X̃i,j = Ĩi · T̃ j
′
∈ Rtr×tc .

11: On chip, compute dX̃i,j = exp(X̃i,j − l̃i) ∈
Rtr×tc .

12: Update gradients dĨi += dX̃i,j · T̃ j .
13: Load dT̃ j from HBM to on-chip SRAM.
14: dT̃ j += Ĩi · dX̃i,j .
15: Write updated dT̃ j back to HBM.
16: end for
17: Write updated dĨi back to HBM.
18: end for
19: return dĨ(i.e. ∂ l̃

∂Ĩ
), dT̃ (i.e. ∂ l̃

∂T̃
).

S6. Backward Process
In this section, we describe the backward process of multi-
level tiling in Alg. 1. Given the multi-level tiling, we em-
ploy an intra-GPU multi-kernel tiling strategy. We also pro-
vide additional details on the backward propagation process
within the intra-GPU tiling strategy in Alg. 2.



References
[1] Changyou Chen, Jianyi Zhang, Yi Xu, Liqun Chen, Jiali

Duan, Yiran Chen, Son Tran, Belinda Zeng, and Trishul
Chilimbi. Why do we need large batchsizes in contrastive
learning? A gradient-bias perspective. In Advances in Neural
Information Processing Systems 35: Annual Conference on
Neural Information Processing Systems 2022, NeurIPS 2022,
New Orleans, LA, USA, November 28 - December 9, 2022,
2022. 2

[2] P Goyal. Accurate, large minibatch sg d: training imagenet in
1 hour. arXiv preprint arXiv:1706.02677, 2017. 2

[3] Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer,
generalize better: closing the generalization gap in large batch
training of neural networks. Advances in neural information
processing systems, 30, 2017. 2


	Analysis of Training Speed Efficiency
	Factors for scaling batch size
	Discussion
	Derivation
	Analysis of Loss Precision Error
	Backward Process

