Appendix

A. Details of Baseline Detectors

In this section, we introduce the baseline methods utilized in our experiments.

CNNDet [59]: This pioneering work collects a well-established dataset comprising real images from LSUN [69] and fake
images generated by ProGAN [19]. It trains a ResNet-50 [25] on this dataset, incorporating random JPEG compression and
Gaussian blurring as data augmentation techniques. The study demonstrates that fake images generated by early generative
models, such as GANs, are relatively easy to detect.

FreqFD [18]: This paper analyzes the differences between real and fake images in the frequency domain, highlighting that
up-sampling operations typically introduce texture-level artifacts in the spatial domain. Consequently, it trains a classifier on
images after applying the DCT, focusing on detection in the frequency domain.

Fusing [29]: This method performs detection on inputs at multiple scales and fuses the features from these different scales
to make a final decision. It generally improves detection performance compared to CNNDet.

LNP [37]: This approach observes that the noise patterns of real images exhibit consistent characteristics in the frequency
domain, whereas fake images differ significantly. It trains a detector to distinguish image authenticity based on these noise
patterns.

LGrad [52]: This method notes that the gradients of fake and real images are distinguishable when approximated using a
pre-trained StyleGAN model. It trains a classifier on these gradient features to differentiate between real and fake images.
UnivFD [43]: This approach leverages a pre-trained CLIP model as a feature extractor and performs classification based on
the extracted embeddings.

DIRE [60]: This method observes that fake images generated by diffusion models can be easily reconstructed using a
pre-trained diffusion model, such as ADM [11]. It trains a classifier on the reconstruction errors to distinguish between real
and fake images.

FregNet [54]: This approach enhances frequency artifacts by designing a sophisticated network that conducts an in-depth
extraction of the frequency footprints of fake images.

NPR [55]: This method extracts up-sampling artifacts by up-sampling the inputs and comparing nearby patch differences.
This simulation effectively reveals generative footprints.

DRCT [5]: This approach leverages a pre-trained diffusion model, such as SD-v1.4 [48], to reconstruct both real and fake
images. It then applies contrastive loss to train the classifier to distinguish reconstructed real images (serving as hard fake
samples) from the original real images.

B. Details of Used Models

In this section, we introduce the details of the image generation models used in our experiments.

Generative Adversarial Network (GAN) [20]. GAN is a representative class of generative models. In a GAN, two neural
networks (i.e., generator and discriminator) compete in a zero-sum game, where the gain of one network comes at the loss of
the other. Multiple GAN models are involved in our experiments, including ProGAN [30], StyleGAN [31], StyleGAN2 [32],
BigGAN [3], CycleGAN [72], StarGAN [7], GauGAN [46], and whichfaceisreal (WFIR) [28].

Ablated Diffusion Model (ADM) [12]. This is a relatively early diffusion model developed by OpenAl. It is capable of
achieving conditional generation by leveraging gradients from a classifier. It is open-sourced with MIT license.

Glide [42]. This is a 3.5 billion-parameter diffusion model developed by OpenAl, which uses a text encoder to condition on
natural language descriptions with classifier-free guidance. This model is with MIT license.

VQ-Diffusion (VQDM) [22]. This model is built on a vector quantized variational autoencoder (VQ-VAE), with its latent
space modeled using a conditional version of the Denoising Diffusion Probabilistic Model. This model is open-sourced with
MIT license.

wukong [64]. This is a text-to-image diffusion model trained on Chinese text description and image pairs.

Latent Diffusion Model (LDM) [48]. This model is the first to implement the diffusion process within the latent space of
pretrained autoencoders. It strikes a near-perfect balance between reducing complexity and preserving details, significantly
enhancing visual quality while operating under constrained computational resources. This model is with MIT license.
Stable Diffusion (SD) [48]. Stable Diffusion is a series of models based on the LDM architecture with fixed, pretrained
CLIP encoders. There are multiple Stable Diffusion models involved in our experiments, i.e., SD-v1.4, SD-v1.5, SD-2,
SD-2-1, SDXL, SDXL-turbo, and SD-3-medium. These models are with creativemlopenrail-m license.

tiny-sd and small-sd [49]. These models are distilled from a fine-tuned SD-v1.5 model (SG161222/Realistic_Vision_V4.0).



Compared to the original model, the distilled models offer up to 100% faster inference times and reduce VRAM usage by up
to 30%. These models are with creativemlopenrail-m license.

¢ Segmind Stable Diffusion 1B (SSD-1B) [23]. The SSD-1B is a distilled version of Stable Diffusion XL (SDXL), reduced
by 50% in size, delivering a 60% increase in speed while still preserving high-quality text-to-image generation performance.
This model is with apache-2.0 license.

* Segmind Mixture of Diffusion Experts (SegMoE-SD) [67]. This is a mixture of expert model combined by 4 SD-v1.5
models using the SegMoE merging framework. Comparing to the single model, this mixture of expert model has better
adherence and better image quality. This model is with apache-2.0 license.

* Playground (PG) [35]. Playground is a model family trained from scratch by the research team at Playground. These
models are based on LDM architecture with two fixed, pre-trained text encoders (OpenCLIP-ViT/G and CLIP-ViT/L). Four
models in this model family are used in our experiments: PG-v2-256, PG-v2-512, PG-v2-1024, and PG-v2.5-1025. These
models are with playground-v2-community and playground-v2dot5-community licenses.

¢ PixArt-XL (PAXL) [6]. These models reduces the training cost by decomposing training into three stages and using an
efficient diffusion transformer. Two PAXL models with different generation resolutions (i.e., PAXL-2-512 and PAXL-2-1024)
are used in our experiments. These models are with openrail++ license.

* Latent Consistency Model (LCM) [40]. The LCMs are distilled from pre-trained classifier-free guided diffusion models.
These distilled models can directly predict the solution of the corresponding ODE in latent space, significantly reducing the
need for multiple iterations. Specifically, two LCM models are involved in this paper: LCM-sdv1-5 and LCM-sdxl, which
are distilled from SD-v1.5 and SDXL, respectively. These models are with openrail++ license.

» FLUX [2]. FLUX is a set of state-of-the-art text-to-image models developed by the Black Forest Lab. These models excel
in prompt adherence, visual quality, image detail, and output diversity. In our experiments, we utilize FLUX.1-sch and
FLUX.1-dev. The weights for these two models are open-sourced under the Apache-2.0 license and the FLUX-1-dev-non-
commercial-license, respectively.

* DALL-E [44]. DALL-E is a series of closed-source text-to-image Al systems built by OpenAl. Both DALL-E 2 and
DALL-E 3 are included in our experiments.

* Midjourney [41]. Midjourney is a series of closed-source text-to-image models developed by Midjourney, Inc. In our
experiments, we used version Midjourney-vo6.

¢ Other In-the-Wild Sources. We also incorporate additional in the wild sources to generate the images in CO-SPYBENCH/in-
the-wild. In addition to DALL-E 3 and Midjourney-v6, we use Civitai, instavibe.ai, and Lexica. These website platforms
generate images based on models like Stable Diffusion [48], FLUX [2], and Lexica Aperture [34], respectively.

C. Illustrations of JPEG Compression’s Impact on Texture-level Artifacts

To further investigate how JPEG compression affects texture-level artifacts and why artifact detectors struggle with lossy
formats (as outlined in Section 2), we conduct a frequency domain analysis. We compute the average frequency energy
for 500 real images and 500 synthetic images. To ensure the analysis captures only the core content of the images, we
first apply denoising with a pre-trained model [9] before performing the Fourier transform. Figure 9 presents the frequency
representations of real images, synthetic images, and their JPEG-compressed versions in separate rows. In the absence of JPEG
compression, synthetic images display abnormal patterns in the high-frequency regions (non-central areas) compared to real
images. However, JPEG compression significantly reduces these differences between real and synthetic images, suggesting
that compression diminishes the artifacts critical for detection.

D. Limitations of Existing Test Datasets

To investigate the limitation of existing test datasets, we evaluate two latest detectors, UnivFD [43] and DRCT [5], both trained
on the DRCT-2M/SD-v1.5 dataset (which includes real images from MSCOCO [36] and fake images generated by SD-v1.5
using MSCOCO captions) across various test scenarios.

Lack of Evaluation on Latest Models. Synthetic images produced by the latest generative models tend to exhibit higher
visual quality, making them more challenging to detect. To illustrate this issue, we evaluate the two detectors on synthetic
images generated by SD-v2, SDXL, FLUX.1-schnell, and FLUX.1-dev [2]. As shown in Figure 10a, both detectors perform
well on SD-v2 and SDXL, which are included in DRCT-2M. However, their performance significantly degrades when applied
to FLUX models, which are not covered by the existing dataset.

Lack of Evaluation on Diverse Objects. Synthetic images generated by text-to-image models can vary significantly based
on the diversity of input captions, as different captions prompt the generation of various objects. Achieving high performance
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Figure 9. Frequency analysis of the impact of JPEG compression on texture-level artifacts
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Figure 10. Detection performance varies significantly across different types of fake image generation.

on a limited set of similar captions does not guarantee effective detection across a wider range of objects. To explore this,
we evaluate two detectors on synthetic images generated by SD-v2 and SDXL using captions from MSCOCO (included in
the training set) and CC3M [4]. The results, shown in Figure 10b, reveal that while the detectors perform well on images
generated from MSCOCO captions, their accuracy declines significantly on images generated from CC3M captions. This
indicates that existing test sets do not sufficiently represent the diversity of image objects.

Lack of Evaluation on Various Generation Parameters. Additionally, existing synthetic image datasets often fix certain
generation parameters, which can artificially inflate detection performance. For instance, DRCT typically uses 50 inference
steps for all models. However, our observations indicate that the number of inference steps impacts detection performance. In
Figure 10c, we evaluate UnivFD on SD-v2 synthetic images generated with varying numbers of inference steps. The results
reveal that images generated with more inference steps are easier to detect, with a 5% accuracy difference between images
generated with 10 steps versus 50 steps.

E. Limitation of Simply Combining Two Types of Detectors

We evaluate the effectiveness of directly combining two types of existing detectors to create a new one. In this experiment, we
use the state-of-the-art artifact detector, NPR [55], and the semantic detector, UnivFD [43]. To combine the two detectors, we
concatenate the artifact and semantic feature vectors before each downstream classifier and then retrain the classifier. The
results, presented in Figure 11, leverage the DRCT-2M/SD-v1.4 dataset for training and test on synthetic images generated
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Figure 11. Limitation of simple combination of two types of detectors.

by various models with random JPEG compression. As shown, the simple combination merely averages the performance of
the two detectors rather than enhancing it. This outcome arises because the two types of detectors are effective in distinct
scenarios (as discussed in Section 1), and direct combination fails to create a synergistic effect, yielding only an aggregate
rather than a complementary result.

F. Discussion of Overfitting Problem in Semantic Detector Training

As discussed in Section 2, semantic detectors often struggle with generalization due to the overfitting problem. For example,
a ResNet-50 [25] trained on the CNNDet dataset [59] with data augmentation may achieve perfect performance on unseen
ProGAN images but fail to detect samples from BigGAN. This happens because the training data is limited to ProGAN-
generated images, leading to overfitting on this specific model. UnivFD [43] mitigates this issue by using a pre-trained CLIP
model (ViT-L-14-224 [47]) as a feature extractor without modifying its weights. This approach leverages the extensive training
of CLIP on billions of images, enabling it to capture the semantic meaning of inputs through its text-image self-supervised
learning.

To further explore the overfitting problem, we fine-tune a pre-trained CLIP model on the DRCT-2M/SD-v1.5 dataset
(comprising over 300,000 real images from MSCOCO and fake images generated by SD-v1.5) using the OpenCLIP [27]
training pipeline. We then train a synthetic image detector on these fine-tuned features and compare its performance with
the original CLIP model. The results, shown in Figure 12, reveal that fine-tuning generally degrades performance on unseen
models due to overfitting. However, performance on SD-v2 improves, likely due to its similarity to SD-v1.5. This finding
suggests that fine-tuning CLIP can be risky. Instead, we propose a better data augmentation during training can help. For
example, DRCT [5] uses a pre-trained diffusion model to reconstruct real images as hard synthetic samples. However, this
approach introduces significant computational overhead and may unfairly inflate the dataset size. Our solution using feature
interpolating, introduced in Section 3.2, improves accuracy by approximately 3% over the original UnivFD (presented in
Figure 12).

G. Comparison of Using Different CLIPs as Backbone Models

We explore using more advanced CLIP models to better handle the latest generative models. We evaluate three top-performing
CLIP models from OpenCLIP [27]: ViT-H-14-224 [63], ViT-H-14-378 [13], and ViT-SO400M-14-384 [70]. As shown in
Figure 13, ViT-SO400M-14-384 outperforms the others, potentially due to its use of Sigmoid loss and higher resolution,
which enable more effective and robust semantic understanding. Based on these findings, we propose to use ViT-SO400M-14-
384 combined with feature interpolation to enhance the generalization capabilities of semantic detectors, as introduced in
Section 3.2.

Table 4. Comparison with AIDE [65]. CO-SPY outperforms Table 5. Comparison of different backbones. Empirical
AIDE on Chemeleon dataset and CO-SPYBENCH, and demon- results show that CLIP achieves the best semantic feature ex-
strates greater resilience to lossy formats, e.g., JPEG. traction among the evaluated backbone models.
Ace, AIGCDetect Chameleon Co-Spy Acc. CLIP-ViT  ResNet-50  ConvNeXT  EVAO2
Raw  JPEG  Raw  JPEG  Raw  JPEG SD-v1.5 9091 79.66 75.05 71.95
AIDE 9277 7308 6193 5524 8515 7461 PG-v2.5-1024 93.05 71.32 72.11 70.65

Co-SPY 8775 7976 6763 63.19 9145 87.06 PAXL-2-1024 92.37 81.95 74.85 74.73
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Figure 12. Enhanced training for semantic detectors using CLIP Figure 13. Comparison between latest CLIP models
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Figure 14. Demonstration of various post-processing functions. Sub-figure (a) shows the original image and the subsequent figures (b)-(h)
illustrate the effect of different functions, with the parameter value presented in the parentheses.

H. Comparison with Another SOTA Baseline AIDE

We compare CO-SPY with AIDE [65] by training on the same DRCT/SD-v1.5. We then evaluate on AIGCDetect [71],
Chameleon [65], and CO-SPYBENCH (also testing with JPEG compression). Observe in Table 4 that while AIDE slightly
outperforms CO-SPY on AIGCDetect w/o JPEG, it performs worse on the others, especially w/ JPEG. We attribute this to
AIDE’s reliance on pixel-level artifacts, which is vulnerable to lossy formats. By contrast, CO-SPY fuses enhanced artifact
and semantic features, being more robust and generalized.

I. Backbone Selection: Why Choose CLIP?

In the default setting of CO-SPY, we use a pre-trained CLIP [27] as the backbone model to extract semantic features. In
the study, we evaluate various pre-trained backbones, i.e., CLIP-ViT (default choice), ResNet-50 [25], ConvNeXT [39],
EVAOQ2 [14], by training on DRCT/SD-v1.5 dataset. The result are shown in Table 5, CLIP achieves the best performance,
due to its large-scale vision-language pretraining. Hence, we choose CLIP-ViT for semantic feature extraction.

J. Evaluation on Pixel-space Diffusion Models

In the main experiment, we primarily focus on evaluating latent diffusion models [48]. In this study, we evaluate 3 pixel-based
diffusion models trained on LSUN-bedroom (1,000 synthetic images with 1,000 real ones). Observe from the Table 6 that
artifact-based detection shows a lower accuracy than stable diffusion (over 80% accuracy), as pixel-space diffusion do not rely
on a latent decoding stage (see Figure 4) and thus exhibit fewer up-sampling artifacts. Consequently, the VAE-based artifact
detector is less effective (around 70%). However, pixel-space diffusion are largely outdated and produce lower-quality outputs,
enabling CO-SPY to detect their semantic inconsistencies (about 85%).



Table 6. Evaluation on Pixel-Space Diffusion Models. The performance of CO-SPY, particularly its artifact detector, slightly degrades on
pixel-space diffusion models since they do not use a VAE-based architecture. However, due to their lower generation quality, CO-SPY can
still effectively detect them based on semantic features.

Semantic Artifact Co-SpYy
Method

AP Acc. AP Acc. AP Acc.

ADM 8396 80.20 7431 6996 84.48  80.30
iDDPM 84.07 8130 75.13 70.10 8734  84.10
PNDM 8290 80.65 7794 7190 86.20 82.70

Table 7. Comparison with existing baselines, trained on CNNDet [59] and evaluated on AIGCDetectBenchmark [71]. Note that
all images undergo random JPEG compression to simulate real-world scenarios. The results are measured in average precision (AP) and
accuracy, with a decision threshold of 0.5. The highest AP scores are highlighted in red, and the highest accuracy scores are highlighted in
blue. Note that only CO-SPY’s results are highlighted if they match the best performance achieved by the baselines.

Detector CNNDet FreqFD Fusing LNP LGrad UnivFD DIRE FreqNet NPR Co-Spy
AP Acc. AP Acc. AP Acc. AP  Acc. AP  Acc. AP  Acc. AP Acc. AP Acce. AP Acc. AP Acc.
ProGAN 100.0 88.50 75.48 100.0 99.98 91.04 80.95 80.19 68.84 99.95 99.01 90.54 85.80 87.19 7495 79.81 75.11 98.45 98.99
StyleGAN 67.68 81.06 68.93 98.74 76.84 87.35 77.10 79.98 64.11 9571 7479 85.18 71.90 83.04 70.26 77.22 73.85 9232 81.38
BigGAN 90.01 5823 6232 5948 94.88 73.88 82.18 72.47 67.20 63.25 86.67 74.52 65.10 76.31 69.55 70.66 67.50 95.24 84.25
CycleGAN  97.75 81.64 73.83 64.38 98.27 88.68 88.73 79.03 79.74 71.65 93.68 71.50 63.50 85.30 72.86 78.80 71.99 91.05 90.58
StarGAN 96.86 82.07 86.28 74.11 98.49 88.74 91.13 78.94 82.13 71.89 94.67 9442 82.00 85.69 68.46 7474 7429 94.65 86.39
GauGAN 98.94 79.84 64.72 59.18 98.75 83.83 67.39 6294 67.12 61.21 97.50 80.90 72.90 78.01 71.87 66.24 65.18 96.66 83.86
StyleGAN-2 63.75 8294 66.06 97.80 70.26 84.40 7426 74.15 61.09 95.15 66.24 7873 72.80 84.49 69.15 77.84 7492 90.67 82.45
WFIR 91.04 5530 45.09 46.85 77.80 78.56 68.25 65.87 58.30 93.41 70.75 62.770 60.40 50.33 48.55 54.70 51.45 82.34 73.05
ADM 64.23 50.54 58.53 5831 60.12 51.17 82.19 72.81 50.25 51.72 64.74 70.00 64.80 77.29 67.30 72.16 67.28 87.54 77.66
Glide 7126 51.53 64.96 59.28 62.39 51.82 77.57 61.58 59.07 87.43 62.04 57.52 57.50 72.84 6632 7642 71.59 7931 70.64
Midjourney 53.76 50.51 61.07 59.70 50.81 50.62 74.20 66.54 63.57 59.31 49.05 49.83 54.62 51.30 7439 60.85 69.01 64.19 67.70
SD-v1.4 55.62 50.07 56.19 56.07 53.09 50.08 76.69 67.49 62.13 60.46 66.43 51.23 52.66 50.90 65.30 5825 76.25 70.95 74.17
SD-v1.5 5522 50.06 55.54 55.17 5246 50.12 75.59 67.00 60.96 59.30 65.95 51.23 53.17 52.00 65.20 57.88 76.41 71.14 76.96
VQDM 7328 51.40 6245 58.84 73.03 5332 7342 6498 5046 52.04 80.23 65.87 58.70 7343 66.12 74.08 69.58 90.59 80.42
wukong 52.65 50.08 59.17 59.47 52.79 5021 74.13 64.17 65.87 6246 7635 5420 51.86 51.00 6135 54.73 75.74 69.31 74.67
DALL-E2  47.16 49.95 45.87 47.00 37.03 49.65 74.15 57.12 5390 64.90 50.60 52.85 50.50 55.45 53.75 76.35 74.10 72.92 73.00
Average 77.81 62.04 65.53 60.52 7642 66.69 8097 71.79 66.77 61.16 85.81 71.71 68.56 63.19 7347 6443 73.53 69.53 79.76

K. Detection Performance using CNNDet Training Set

We conduct experiments on the CNNDet training set and evaluate the performance of the converged detectors on the
AIGCDetectBenchmark, which comprises synthetic images generated by 16 different generative models. To simulate real-
world scenarios, we assess the detectors on images subjected to random JPEG compression. The results are presented in
Table 7, where CO-SPY achieves an average accuracy improvement of 8% over the best baseline, UnivFD. Although the
performance of CO-SPY on GAN-based images is slightly lower than that of UnivFD, likely due to the impact of JPEG
compression on the artifact detector, CO-SPY demonstrates superior performance on the more challenging task of detecting
diffusion-generated fake images. This improved generalization is attributed to the adaptive fusion mechanism in CO-SPY,
which dynamically integrates both semantic and artifact features, enabling more comprehensive decision-making.

In addition, we do not apply any transformation to the input images during training and assess the detection performance
on the raw inputs (same as the evaluation setup in most baselines [37, 55]). The results are shown in Table 8, where each
raw shows the test result on different generative models and the last raw presents the averaged result. Observe that CO-SPY
achieves the best performance with 96.72% AP and 87.75% accuracy in average, outperforming the best AP (87.13% of
UnivFD) for over 9% and the best accuracy (80.69% of NPR) for over 7%. This can be attributed to the enhanced artifact and
semantic feature extraction in CO-SPY and its comprehensive decision based on both features. Notably, CO-SPY achieves
slightly lower but comparable high performance on GAN-generated synthetic images. This is because the baseline detectors
tend to overfit on the training data, whose synthetic samples are also generated by GANs. Therefore, they may focus on
low-level features typically spread on GAN-generated images but not generalizing to others. On the other hand, CO-SPY
makes comprehensive decisions, and hence it generalizes to diffusion-generated images.



Table 8. Comparison with existing baselines, trained on CNNDet [59] and evaluated on AIGCDetectBenchmark [71]. Note that no
post-processing is applied to the inputs. The results are measured in average precision (AP) and accuracy, with a decision threshold of 0.5.
The highest AP scores are highlighted in red, and the highest accuracy scores are highlighted in blue. Note that only CO-SPY’s results are
highlighted if they match the best performance achieved by the baselines.

Detector CNNDet FreqFD Fusing LNP LGrad UnivFD DIRE-G FreqNet NPR Co-Spy
AP Acc. AP Acc. AP Acc. AP Acc. AP  Acc. AP  Acc. AP Acc. AP Acc. AP Acc. AP Acc.
ProGAN 100.0 100.0 100.0 99.86 100.0 100.0 99.75 97.31 99.32 87.78 100.0 99.81 91.54 91.80 100.0 99.58 99.95 99.84 99.86
StyleGAN 99.19 72.61 9581 86.56 99.26 82.92 9855 9231 95.53 77.93 97.48 80.40 85.18 7190 99.78 89.91 99.74 97.52 96.29
BigGAN 90.39 59.45 70.54 69.77 95.65 78.47 94.51 8495 80.01 74.85 99.27 95.08 74.52 69.10 96.05 90.45 8439 83.20 92.00
CycleGAN 9792 84.63 88.06 70.82 98.47 91.11 97.09 86.00 96.66 90.12 98.33 71.50 66.80 99.63 95.84 97.83 94.10 99.33 98.03
StarGAN 97.51 84.74 100.0 96.87 99.05 91.40 99.94 85.12 99.00 94.15 99.37 9575 94.42 88.50 99.80 85.67 100.0 99.70 96.05
GauGAN 98.77 82.86 7442 65.69 98.60 86.27 76.51 71.74 83.45 72.86 99.47 80.90 7290 98.63 93.41 81.73 79.97 99.95 90.90
StyleGAN-2 99.03 69.22 95.59 80.17 98.84 78.97 98.98 94.14 90.85 72.25 97.71 70.76 78.73 72.80 99.58 87.89 99.34 99.94 97.89
WFIR 91.27 56.60 43.54 45.30 81.95 74.03 61.80 70.26 57.30 9422 7270 62.70 60.40 51.06 49.20 61.55 59.75 92.12 71.65
ADM 64.70 51.04 60.30 61.82 60.26 51.68 80.78 71.94 51.92 55.18 89.80 67.46 70.00 64.80 92.13 84.06 73.22 68.95 73.28
Glide 71.61 5278 67.69 58.34 60.45 52.85 7221 6229 67.69 68.64 88.04 63.09 57.52 57.50 89.78 82.78 81.01 75.51 88.82
Midjourney 53.45 50.60 48.71 46.93 48.78 50.79 79.54 70.12 62.77 58.83 49.72 49.87 54.62 53.10 80.88 71.02 80.33 74.57 88.70
SD-v1.4 55.77 50.14 4355 45.01 5227 50.13 6397 59.29 6647 67.24 68.63 51.70 52.66 5240 77.10 65.56 80.44 7558 86.01
SD-v1.5 55.68 50.07 43.09 44.27 5199 50.07 64.16 59.26 6591 66.40 68.07 51.59 53.17 53.00 77.95 65.84 8123 76.36 86.35
VQDM 72.62 52.15 69.45 6534 71.55 5393 66.82 6270 54.30 56.92 97.53 86.01 65.87 58.70 90.42 8229 74.66 72.98 82.35
wukong 5271 50.08 46.96 4848 51.53 50.13 61.99 56.75 69.84 68.41 7844 55.14 51.86 48.70 69.43 58.59 7542 72.23 78.77
DALL-E2  47.16 49.85 39.58 36.00 37.89 49.50 87.88 76.25 64.21 5745 66.06 50.80 52.85 51.40 5540 55.75 70.86 61.40 77.05
Average 77.99 63.55 67.96 63.83 76.23 68.76 8229 74.50 76.14 70.39 87.13 7425 68.63 64.61 86.10 78.61 83.90 80.69 87.75

Table 9. Comparison with existing baselines, trained on DRCT [5] and evaluated on GenImage dataset [73]. The results are measured
in average precision (AP) and accuracy, with a decision threshold of 0.5. The highest AP scores are highlighted in red, and the highest
accuracy scores are highlighted in blue. Note that only CO-SPY’s results are highlighted if they match the best performance achieved by the
baselines.

Detector CNNDet FreqFD Fusing LNP UnivFD DIRE FreqNet NPR DRCT Co-Spy
AP Acc. AP Acc. AP Acc. AP Acc. AP  Acc. AP  Acc. AP Acc. AP Acc. AP Acc. AP Acc.
ADM 4793 50.12 48.68 50.14 55.17 5043 57.39 5897 53.77 68.60 53.95 7821 5827 75.00 59.30 81.74 76.81 81.63 67.25
Glide 7270 5198 72.85 52.13 77.29 5143 9633 7448 8192 69.64 85.61 6349 9247 6842 81.12 92.83 86.60 95.90 93.02
Midjourney 73.53 53.12 65.11 50.52 77.94 52.02 7455 5433 8835 78.08 63.94 5323 67.55 51.22 88.50 58.27 89.38 82.39 83.45
SD-v1.4 99.91 98.28 94.27 64.83 99.34 99.88 98.20 96.58 90.13 97.51 86.48 94.18 68.83 99.54 93.30 94.40 88.45 96.92 96.83
SD-v1.5 99.87 98.17 93.85 64.61 99.28 99.84 9795 9643 89.94 97.53 86.56 94.39 68.89 99.55 93.23 94.42 88.44 96.95 96.68
VQDM 5322 51.08 61.33 51.58 61.18 50.75 88.51 58.46 65.56 56.14 64.55 52.48 75.60 57.25 66.59 53.40 84.07 90.57 78.83
wukong 99.76 96.14 92.10 61.82 97.66 99.60 9551 95.13 87.38 95.66 80.34 91.64 63.62 98.51 82.68 93.99 87.75 96.72 9593
BigGAN 41.61 49.50 70.80 56.17 45.01 49.78 42.67 45.15 67.07 5725 4476 48.62 40.56 4420 35.18 39.45 74.10 65.39 65.20
Average 73.57 68.55 74.87 5648 77.05 68.84 86.01 72.68 81.25 72.79 7727 65.64 79.32 60.09 82.75 70.09 89.03 83.58 84.65

L. Detection Performance using DRCT Training Set over Genlmage Test Set

The test results on GenImage [73] are presented in Table 9, where CO-SPY achieves slightly better performance compared to
the latest detector, DRCT. The reason is that DRCT leverages SD-v1.4 to reconstruct real images, thereby creating challenging
synthetic samples and effectively increasing the amount of training data. Despite this advantage, CO-SPY still outperforms
DRCT due to its comprehensive decision-making approach.

M. Illustration of Various Post-processing Transformations

We illustrate the effect of various post-processing transformations (evaluated in Section 4.3) in Figure 14.

N. Ablation Study on the Strength of Feature Interpolation as Data Augmentation

In this section, we perform an ablation study to evaluate the impact of feature interpolation strength (as introduced in
Section 3.2) on detection performance. We utilize the DRCT [5] training set and CO-SPYBENCH as the test set. We randomly
select 0% (no augmentation), 20%, 40%, 60%, and 80% of the data in each batch for feature interpolation. The results are
presented in Figure 15. Observe that incorporating feature interpolation as an augmentation technique generally enhances
Co-SpY’s detection performance by approximately 3%. Specifically, interpolation probabilities of 40% and 60% yield
the most significant improvements. Consequently, we adopt a default probability of 50% for performing random feature
interpolation.



=)
S

Bz 0% 0 20% . 40% 1 60% T 80%

©
S

S

g % 7 7 7

& 80 7 7 7 7 7 '

2 / ’ 2 2 2 7 7 2 2 2

Q 70 Y 7 7 7 2 % 2 0 0 ﬂ

< W HHHH HHHH HHHH ) ) ) 0 0 0 0
pM A W3 oy b0 024 75\2 DXL NAS) Dev
’ * = S o wm—ﬁ—l 9-,x1>>ﬁ‘7‘” LOWSET o SDT T gy ok

Figure 15. Ablation study on the probability of random feature interpolation

Table 10. Ablation study on CO-SPY, trained on DRCT [5] and evaluated on CO-SPYBENCH. The results are measured in average
precision (AP) and accuracy, with a decision threshold of 0.5. The highest AP scores are highlighted in red, and the highest accuracy scores
are highlighted in blue. Note that only CO-SPY’s results are highlighted if they match the best performance achieved by the baselines.

Method Only Semantic Only Artifact Avg Max Min Simple Concat Co-Spy
AP Acc. AP Acc. AP Acc. AP Acc. AP Acc. AP Acc. AP Acc.
LDM 79.86 66.07 67.78 58.19 77.50 63.00 74.76 68.16 78.52 56.10 85.25 84.51 95.04
SD-v1.4 93.46 86.90 95.10 87.62 97.16 92.54 95.26 85.92 96.82 88.60 87.95 83.54 91.95
SD-v1.5 93.55 86.85 95.21 87.78 97.27 92.78 95.34 85.97 96.94 88.66 96.84 87.64 91.31
tiny-sd 87.77 76.84 83.76 74.82 90.70 80.94 86.27 79.84 91.41 71.82 85.98 82.35 84.80
SegMoE-SD 89.70 80.35 91.26 83.85 94.22 88.33 91.68 84.22 93.99 79.98 91.26 68.01 89.49
SDXL-turbo 95.08 89.15 95.57 88.03 97.86 93.42 96.22 86.01 97.64 91.17 97.90 82.89 95.39
SDXL 87.79 77.22 75.54 65.25 86.72 74.66 83.57 76.45 86.85 66.02 77.80 76.27 74.12
PG-v2-512 72.85 66.59 58.10 80.83 66.36 78.68 70.98 79.17 59.97 79.17 64.12 85.02 64.86
PG-v2-256 89.08 79.20 68.30 59.05 85.21 70.05 82.89 75.15 81.35 63.10 86.83 79.82 72.92
PAXL-2-1024 97.14 92.80 81.85 72.58 94.61 90.53 95.04 85.67 92.66 79.71 89.93 87.27 93.94
PAXL-2-512 97.31 92.93 89.98 81.97 97.06 92.83 96.10 86.13 96.26 88.77 94.49 95.27 94.96
LCM-sdxl 96.95 92.29 92.94 84.52 97.86 93.59 96.43 86.44 97.38 90.37 87.64 79.57 96.20
LCM-sdv1-5 96.77 92.45 97.88 88.58 98.86 94.37 98.60 86.45 98.57 94.58 91.98 89.87 97.14
FLUX.1-sch 93.31 84.93 84.18 75.02 92.99 86.24 91.70 83.50 91.89 76.45 83.27 75.49 85.24
Average 91.64 83.63 84.71 76.10 92.06 84.26 90.18 81.49 91.39 78.24 88.31 81.19 87.67

O. Ablation Study on Feature Fusion

In this section, we conduct an ablation study of CO-SPY to examine the integration of semantic and artifact features. The
experiments are performed using the DRCT training set, and the performance is evaluated on CO-SPYBENCH. The results are
presented in Table 10, which compare the default CO-SPY setting with several alternative and straightforward configurations.
These alternatives include (1) using only semantic features for detection, (2) only artifact features, (3) averaging the semantic
and artifact scores from two detectors, (4) taking the maximum score between the semantic and artifact detectors, (5) outputting
the minimum score, and (6) simply concatenating the semantic and artifact vectors without an adaptive regulator. As shown
in the table, the default setting of CO-SPY outperforms these straightforward combinations in most cases, demonstrating
the effectiveness of our design. This superior performance is attributed to the regulators that dynamically assign adaptive
coefficients to the semantic and artifact features, allowing the model to handle different test cases effectively. In contrast,
simple concatenation leads to overfitting on one feature, resulting in reduced effectiveness.

P. Detection Performance on More Evaluation Metrics

In addition to AP and accuracy, we consider F1 and ROC-AUC scores in Table 11, and TPRs at low FPRs in Table 12.
The experiment is conducted on DRCT training set and CO-SPYBENCH evaluation set. Observe that CO-SPY consistently
outperforms the existing baselines regarding the four new metrics, demonstrating its general high effectiveness.

Q. Details of CO-SPYBENCH and CO-SPYBENCH/in-the-wild

The first component of CO-SPYBENCH focuses on generating synthetic images using state-of-the-art open-source models. We

emphasize text-to-image generation due to its simplicity and widespread adoption. To ensure diversity within the dataset, we

incorporate several key variations:

1. Different Generative Models: We include 22 diffusion models, such as the latest FLUX [2], to cover a wide range of
generative architectures.



Table 11. Comparison with existing baselines, trained on DRCT [5] and evaluated on CO-SPYBENCH dataset. The results are
measured in F1 score (%) and ROC-AUC score (%). The highest F1 scores are highlighted in red, and the highest ROC-AUC scores are
highlighted in blue. Note that only CO-SPY’s results are highlighted if they match the best performance achieved by the baselines.

Detector CNNDet FreqFD Fusing LNP UnivFD DIRE FreqNet NPR DRCT Co-SpYy
F1 AUC F1 AUC FI AUC FI AUC FI AUC FlI AUC FlI AUC Fl1 AUC Fl1 AUC Fl AUC
LDM 72.53 89.65 1638 72.46 79.64 98.16 83.01 96.08 77.97 87.97 50.57 8553 67.85 91.89 8242 92.05 81.81 89.29 99.02
SD-v1.4 89.32 97.56 41.64 92.67 99.97 9592 99.31 80.24 89.38 80.78 96.83 57.39 91.08 90.49 97.70 83.78 92.25 91.68 97.86
SD-v1.5 89.08 97.52 40.76 92.58 99.97 96.23 99.35 80.25 89.46 81.08 97.01 56.71 91.08 90.94 97.77 83.66 91.86 90.93 97.94
SSD-1B 52.68 88.67 0.16 4890 15.15 81.79 7494 94.16 7454 86.29 26.08 73.16 2.76 4631 095 5255 78.16 82.88 95.33
tiny-sd 5230 89.02 9.50 8220 7045 98.02 7838 9535 7520 86.34 44.66 88.48 4532 89.03 96.92 82.57 89.19 82.98 95.87
SegMoE-SD 6742 9221 7.87 83.12 6424 97.18 8527 96.96 8290 90.70 49.99 89.68 47.24 89.65 98.15 77.37 81.40 88.77 97.46
small-sd 59.82 91.10 10.86 84.01 79.08 99.11 77.34 9528 7585 87.16 55.10 91.90 49.52 90.88 97.12 83.80 91.42 84.27 96.18
SD-2-1 5592 86.84 099 5298 31.77 92.62 3027 81.47 81.31 89.75 4835 8855 11.55 6235 13.16 71.39 78.48 83.09 96.99
SD-3-medium 39.34 79.70 1.19 60.64 9.93 81.00 20.00 75.69 77.13 8734 2642 76.76 448 5506 8.69 72.18 77.18 81.35 95.25
SDXL-turbo ~ 87.79 9594 37.63 93.89 32.81 9594 81.15 9578 84.35 91.16 63.96 89.74 52.11 88.53 81.40 96.10 82.95 91.83 99.07
SD-2 5095 87.13 0.63 50.16 21.59 8834 22.67 77.24 70.78 83.96 3570 84.32 8.12 56.52 12.76 73.43 77.40 81.69 95.32
SDXL 42.04 86.04 0.08 42.62 452 7418 76.73 94.18 60.40 73.01 1099 64.66 146 4472 0.50 4532 81.80 67.12 91.76
PG-v2.5-1024 19.80 63.76 0.08 4850 221 78.65 74.86 94.40 78.68 83.54 1227 60.18 081 5559 034 5043 73.00 78.14 96.91
PG-v2-1024 4599 8476 0.08 50.77 851 86.42 16.16 75.61 79.02 84.02 26.08 77.17 127 5411 293 6455 67.10 71.82 97.13
PG-v2-512 3225 79.04 0.75 5724 6.67 6989 5.60 57.22 52.88 70.16 16.71 72.12 242 3839 546 64.46 85.27 49.40 83.82
PG-v2-256 4558 81.43 2.01 59.07 486 73.09 2330 70.63 59.42 73.86 36.35 80.12 3.84 4180 7.78 56.13 79.57 64.89 88.92
PAXL-2-1024 27.67 70.12 032 56.44 1391 88.13 19.13 7546 80.59 8551 2036 69.07 3.58 66.05 12.66 73.57 73.56 77.56 98.47
PAXL-2-512  50.33 8276 9.54 82.89 5479 96.50 67.18 92.67 80.83 85.73 41.11 79.03 29.08 84.80 7820 95.68 77.83 82.04 98.90
LCM-sdxl 78.47 91.85 10.40 82.84 58.83 98.16 83.78 9592 7848 8270 5548 8848 4231 86.53 11.68 70.57 83.65 92.78 99.11
LCM-sdvl-5 92.00 97.17 53.74 9492 76.96 98.93 90.40 97.80 80.17 84.41 74.11 92.71 69.98 93.32 93.61 98.57 82.16 88.75 99.67
FLUX.l-sch 2695 7129 134 57.68 4.60 77.11 22.12 7425 7270 79.85 2499 7222 722 63.70 19.07 79.39 69.38 74.26 96.08
FLUX.l-dev  30.89 69.85 142 5377 11.54 8343 2136 7230 76.22 8231 25.14 7224 230 5232 1124 7146 7224 77.68 96.51
Average 5496 85.16 11.24 6820 38.65 88.94 56.63 86.69 7545 8430 41.19 81.36 2579 69.71 40.64 77.98 78.15 83.91 96.07

Table 12. Comparison with existing baselines, trained on DRCT [5] and evaluated on CO-SPYBENCH dataset. The results are
measured in TPR at 10% FPR and 1% FPR. The highest T-10 (TPR at 10% FPR) are highlighted in red, and the highest T-1 (TPR at 1%
FPR) are highlighted in blue. Note that only CO-SPY’s results are highlighted if they match the best performance achieved by the baselines.

Detector CNNDet FreqFD Fusing LNP UnivFD DIRE FreqNet NPR DRCT Co-Spy
T Tt T10 T1 T1I0 TI TI1I0 T1 T10 T1 T10 TI T10 TI T10 T1 TI10 T1 T10 T1

LDM 75.54 4138 37.72 1322 9570 7820 89.10 49.66 75.88 21.56 64.20 2547 74.84 33.66 84.76 38.02 6528 19.32 78.26
SD-v1.4 99.66 93.86 77.28 35.30 99.58 99.22 8540 74.10 21.54 91.43 57.33 70.66 20.74 97.48 43.58 73.28 24.50 9542 61.52
SD-v1.5 99.84 93.72 75.84 34.10 99.40 99.36 86.36 7422 21.70 92.53 57.43 69.90 20.56 97.68 44.24 70.94 23.36 95.00 63.38
SSD-1B 69.80 20.48 692 0.18 61.34 18.76 8238 36.28 57.38 13.16 38.07 9.73 520 026 2.64 0.00 4340 692 38.44
tiny-sd 84.48 3274 4438 8.64 9592 7382 86.82 38.10 56.78 8.08 64.57 19.77 60.50 12.62 25.04 61.62 13.80 88.10 40.84
SegMoE-SD  79.26 2894 4522 7.16 94.02 66.76 9294 48.18 66.74 1544 67.80 25.07 6320 12.96 4344 3694 4.86 94.08 53.18
small-sd 9322 49.52 4798 9.48 8398 86.78 36.70 61.84 11.26 73.77 27.57 6740 1344 97.52 2562 68.86 19.04 89.74 40.16
SD-2-1 75.64 28.70 10.08 0.92 7940 33.52 38.88 6.50 69.80 18.60 64.40 2320 17.34 1.80 21.78 090 4232 7.24 51.92
SD-3-medium 54.08 13.96 1326 122 53.02 13.18 26.68 3.08 6098 1644 40.77 997 840 0.82 18.04 056 38.08 5.50 35.62
SDXL-turbo  92.08 65.70 82.08 33.48 90.68 43.06 88.76 38.66 77.52 21.38 72.83 37.70 64.70 12.68 90.90 2822 74.46 2590 80.52
SD-2 69.54 2138 9.10 0.72 70.12 24.66 2946 4.16 5378 1090 5397 13.77 12.08 1.14 21.58 084 39.56 5.72 34.50
SDXL 61.38 13.00 290 0.08 46.88 7.18 38.00 46.52 876 23.10 3.70 350 0.18 1.04 0.04 3936 544 73.12 23.60
PG-v2.5-1024 47.58 8.72 432 0.10 34.62 3.72 8392 3280 79.20 23.62 21.67 3.83 4.10 0.04 166 002 3412 8.04 45.76
PG-v2-1024  71.64 20.80 4.94 0.10 62.52 1248 25.62 224 80.50 26.56 41.00 9.13 4.02 0.12 7.74 004 19.14 142 48.24
PG-v2-512 5240 10.54 1122 076 4376 9.54 934 0.72 3992 574 30.67 583 378 034 1328 032 4922 856 11.76
PG-v2-256 60.88 17.80 13.36 1.88 40.56 7.22 2742 460 50.76 7.34 4923 1497 6.80 0.66 1330 0.90 3390 4.68 21.86
PAXL-2-1024 56.92 1740 946 036 62.08 1638 26.80 344 91.60 4348 3250 7.50 12.10 0.18 21.02 0.78 30.92 3.84 64.74
PAXL-2-512 7396 3534 4552 836 89.88 55.02 7698 24.08 93.94 4838 52.53 18.53 4622 5.62 90.54 21.58 39.86 6.42 75.92
LCM-sdxl 87.82 4948 4890 9.18 97.12 6446 88.18 5542 91.36 4490 69.03 2830 58.02 930 1828 090 76.68 27.44 77.02
LCM-sdvl-5 94.16 7498 8430 4626 98.40 7882 94.56 68.20 93.22 46.48 8237 4857 78.12 31.86 98.10 67.46 6198 11.88 92.68
FLUX.l-sch  40.54 7.14 11.48 1.02 4324 696 2770 440 66.06 20.14 37.83 9.10 1328 122 29.80 242 2892 5.62 39.12
FLUX.1-dev  46.86 1236 1030 124 5426 1422 2492 524 7698 30.20 39.23 957 5.06 034 1812 128 3550 7.12 48.60
Average 72.15 3445 31.66 9.72 7329 4141 63.14 30.56 69.96 22.08 54.70 21.18 34.06 821 4733 1574 4838 11.21 51.26

2. Diverse Caption Inputs: Captions are collected from five well-known image-text datasets, including MSCOCO [36],
CC3M [4], Flickr [68], TextCaps [50], and SBU [45]. Captions are randomly selected to generate a variety of image
descriptions.

3. Varied Generation Configurations: We randomize generation parameters by setting the number of inference steps between
10 and 50 and adjusting the guidance scales from 3.0 to 7.0. These settings are chosen to reflect typical and reasonable
values used in image generation.



Table 13. Configuration of CO-SPYBENCH.

Abbreviation Model Name (on Huggingface) Release Date  Image Count
LDM CompVis/ldm-text2im-large-256 Jul. 2022 25,000
SD-v1.4 CompVis/stable-diffusion-v1-4 Aug. 2022 25,000
SD-v1.5 runwayml/stable-diffusion-v1-5 Oct. 2022 25,000
SSD-1B segmind/SSD-1B Jul. 2023 25,000
tiny-sd segmind/tiny-sd Jun. 2023 25,000
SegMoE-SD segmind/SegMoE-SD-4x2-v0 Jan. 2024 25,000
small-sd segmind/small-sd Jul. 2023 25,000
SD-2-1 stabilityai/stable-diffusion-2-1 Dec. 2022 25,000
SD-3-medium stabilityai/stable-diffusion-3-medium-diffusers Jun. 2024 25,000
SDXL-turbo stabilityai/sdxl-turbo Nov. 2023 25,000
SD-2 stabilityai/stable-diffusion-2 Nov. 2022 25,000
SDXL stabilityai/stable-diffusion-xI-base-1.0 Jul. 2023 25,000
PG-v2.5-1024  playgroundai/playground-v2.5-1024px-aesthetic Feb. 2024 25,000
PG-v2-1024 playgroundai/playground-v2-1024px-aesthetic Dec. 2023 25,000
PG-v2-512 playgroundai/playground-v2-512px-base Dec. 2023 25,000
PG-v2-256 playgroundai/playground-v2-256px-base Dec. 2023 25,000
PAXL-2-1024 PixArt-alpha/Pix Art-XL-2-1024-MS Nov. 2023 25,000
PAXL-2-512 PixArt-alpha/PixArt-XL-2-512x512 Nov. 2023 25,000
LCM-sdxl latent-consistency/lcm-lora-sdxl Nov. 2023 25,000
LCM-sdv1-5 latent-consistency/lcm-lora-sdv1-5 Nov. 2023 25,000
FLUX.1-sch black-forest-labs/FLUX.1-schnell Aug. 2024 25,000
FLUX.1-dev black-forest-labs/FLUX.1-dev Aug. 2024 25,000

Table 14. Configuration of CO-SPYBENCH/in-the-wild.

Abbreviation Source Website Generative Model Image Count
Civitai https://civitai.com/ Stable Diffusion [48] 10,000
DALL-E 3 huggingface DALL-E 3 [44] Around 1M
instavibe.ai https://www.instavibe.ai/discover FLUX [2] 30,000
Lexica https://lexica.art/ Lexica Aperture [34] 9,000
Midjourney-v6 huggingface Midjourney-v6 [41] 520,000

4. Broad Range of Real Images: To maintain a balanced and comprehensive benchmark, we include an equal number of real
images from the aforementioned caption datasets. This ensures that the benchmark provides a robust comparison between
real and synthetic images.

Details of the used models are provided in Table 13. Additionally, Figure 16 presents illustrations of various synthetic images.

Co-SPYBENCH/in-the-wild. The second component of CO-SPYBENCH comprises synthetic images sourced from the
Internet, providing a realistic evaluation environment for detection methods. Specifically, we collect images from five popular
platforms, such as Civitai [8] and Lexica [34]. These images are generated and post-processed by developers or users, without
our control over their creation processes. Consequently, this dataset closely mirrors practical, real-world scenarios, offering a
robust evaluation of detection methods. We provide descriptions of each source in Table 14 and illustrations in Figure 17.


https://civitai.com/
https://huggingface.co/datasets/ProGamerGov/synthetic-dataset-1m-dalle3-high-quality-captions
https://www.instavibe.ai/discover
https://lexica.art/
https://huggingface.co/datasets/terminusresearch/midjourney-v6-520k-raw
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Figure 16. Demonstrations of CO-SPYBENCH dataset. Sub-figure (a) shows three real images from MSCOCO-2017, CC3M and TextCaps,
respectively. The subsequent figures are generated using a series of state-of-the-art text-to-image generative models. The text captions used
for generation are derived from the descriptions of the three real images: (Left) “A grey and white cat sitting in a sink.”; (Middle) This
castle dates back to the 19th century.; and (Right) The young man on the soccer team sponsored by Bailey Scaffolding waits carefully as the
number 2 player on the opposing team prepares to kick the ball.. The url of each real image is provided using hyper-reference.


http://images.cocodataset.org/train2017/000000410533.jpg
http://media.cntraveller.in/wp-content/uploads/2014/08/UK_castle.jpg
http://media.cntraveller.in/wp-content/uploads/2014/08/UK_castle.jpg
https://c5.staticflickr.com/8/7413/16590922592_41dcfda42c_o.jpg
https://c5.staticflickr.com/8/7413/16590922592_41dcfda42c_o.jpg
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Figure 17. Demonstration of CO-SPYBENCH/in-the-wild dataset.
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