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A. User Study

In addition to the objective metrics presented in Table 1, we have also performed a user study for subjective evaluation on the
VGGSound [1] test set. For comparisons, we have selected our best model (MMAudio-L-44.1kHz) and four best baselines:

1. Seeing and Hearing [69], as it has the highest ImageBind (i.e., best semantic alignment with videos) score, besides ours.
2. V-AURA [65], as it has the lowest DeSync (i.e., best temporal alignment) with videos, besides ours.
3. VATT [40], as it has the lowest Kullback–Leibler divergence (i.e., KLPANNs and KLPaSST), besides ours.
4. V2A-Mapper [66], as it has the lowest Fréchet distances (i.e., FDPaSST, FDPANNs, and FDVGG), besides ours.

We sample eight videos from the VGGSound [1] test set, after excluding videos that are of low-resolution (below 360p) or
that contain human speech. In total, each participant evaluates 40 videos (8 videos × 5 methods). We group the samples for
the same video, and randomly shuffle the ordering in each group to avoid bias. We ask each participant to rate the generation
in three aspects using the Likert scale [36] (1-5; strongly disagree, disagree, neutral, agree, strongly agree) providing the
following instructions:

(a) The audio is of high quality.
Explanation: An audio is low-quality if it is noisy, unclear, or muffled. In this aspect, ignore visual information and
focus on the audio.

(b) The audio is semantically aligned with the video.
Explanation: An audio is semantically misaligned with the video if the audio effects are unlikely to occur in the scenario
depicted by the video, e.g., the sound of an explosion in a library.

(c) The audio is temporally aligned with the video.
Explanation: An audio is temporally misaligned with the video if the audio sounds delayed/advanced compared to the
video, or when audio events happen at the wrong time (e.g., in the video, the drummer hits the drum twice and stops; but
in the audio, the sound of the drum keeps occurring).

In total, we have collected 920 responses in each of these aspects from 23 participants. Table A1 summarizes the results
from the user study. MMAudio receives significantly higher ratings in all three aspects from the users, which aligns with the
objective metrics presented in Table 1 of the main paper.

Method Audio quality↑ Semantic alignment↑ Temporal alignment↑
Seeing&Hearing [69] 2.65±1.05 3.10±1.24 1.85±0.99
V-AURA [65] 3.59±1.02 3.70±1.17 3.65±1.16
VATT [40] 2.66±0.99 3.32±1.17 2.04±1.07
V2A-Mapper [66] 3.00±0.95 3.28±1.27 2.03±1.11
MMAudio-L-44.1kHz 4.14±0.77 4.52±0.74 4.46±0.80

Table A1. Average ratings for each method from the user study. We show mean±std in each aspect.

B. Comparisons with Movie Gen Audio

Recently, Movie Gen Audio [52] has been introduced for generating sound effects and music for input videos. While Movie
Gen Audio’s technical details are sparse, it represents the industry’s current state-of-the-art video-to-audio synthesis algorithm.
Its 13-billion parameters model has been trained on non-publicly accessible data that is > 100× larger than ours. Nevertheless,
we compare MMAudio to Movie Gen Audio [52] to benchmark the differences between public and private models.

At the time of writing, the only accessible outputs from Movie Gen Audio are 5272 generations in the “Movie Gen Audio
Bench” dataset. All the videos from Movie Gen Audio Bench are generated by MovieGen [52], which we note is different
from the distribution of real-world videos (e.g., over-smoothed textures, slow motions). Since these are synthetic videos, there
is no corresponding ground-truth audio. We run our best model MMAudio-L-44.1kHz on these videos and the corresponding
audio prompts (which Movie Gen Audio also uses) and compare our generations with Movie Gen Audio.

Since there is no ground truth audio, among the standard metrics that we have used in the main paper, we can only evaluate
Inception Score (IS, audio quality), IB-score (ImageBind [11] similarly, semantic alignment between video and audio), DeSync
(misalignment predicted by SynchFormer [19] between video and audio), and CLAP [7, 68] (alignment between text and

2While the MovieGen technical report mentioned 538 samples, only 527 were released at the time of writing.



audio). Additionally, we have conducted a user study following the protocol of Appendix A, and have excluded audios with
very low volume (cannot be heard clearly at a normal volume) generated by Movie Gen Audio to prevent bias. We sampled a
total of 5 videos and received 230 responses in each of the aspects from 23 participants.

Table A2 summarizes our results. In subjective metrics, MMAudio is comparable to Movie Gen Audio – slightly worse in
semantic alignment and slightly better in temporal alignment. In objective metrics, we observe the same trend – MMAudio
and Movie Gen Audio obtain the same audio quality (IS) score, Movie Gen Audio has a better semantic alignment (IB-score
and CLAP), and MMAudio has a better video-audio synchrony (DeSync).

Subjective metrics Objective metrics

Method Param Training data Audio qual.↑ Semantic align.↑ Temporal align.↑ IS↑ IB-score↑ CLAP↑ DeSync↓

Movie Gen Audio [52] 13B O(1, 000, 000)h 3.93±0.92 4.36±0.74 3.52±1.21 8.40 36.26 0.4409 1.006
MMAudio-L-44.1kHz 1.03B ∼ 8, 200h 3.93±0.89 4.26±0.71 3.62±1.03 8.40 27.01 0.4324 0.771

Table A2. Comparisons between Movie Gen Audio and MMAudio in both subjective metrics (from user study) and objective metrics. For
the subjective metrics, we show mean±std.

Further, in terms of IB-score, we find that MMAudio struggles more in some videos, while Movie Gen Audio delivers more
consistent results. We plot the sorted IB-score comparing MMAudio and Movie Gen Audio in Figure A1 (left). Movie Gen
Audio consistently performs better in the low-performance regime, but the gap narrows in the high-performance region. We
believe this is due to our limited training data, which is unable to adequately cover the data in Movie Gen Audio Bench and
thus falls short in unfamiliar video types. Note, our only video-audio dataset for training is VGGSound [1] which contains
videos for 310 classes. We hypothesize that collecting open-world data beyond these classes can effectively reduce this
performance gap. The same phenomenon occurs at a much smaller scale for the CLAP score, which might be because we
use more audio-text data. Figure A2 shows examples where we obtain a substantially higher/lower IB-score on videos with
concepts well/not well covered by the training data.

12.95

4.77

Figure A1. Sorted MMAudio and Movie Gen Audio performance scores in Movie Gen Audio Bench.

C. Evaluation on the Greatest Hits Dataset

To address any potential bias by using the model-based DeSync metric, we conduct an additional experiment to assess temporal
alignment by comparing the onsets of generated audio with ground-truth labels. Concretely, we use the Greatest Hits [48] test
set (244 videos) which contains videos with distinct and labeled sound events (a drumstick hitting <object>). Notably, neither
our models nor the baselines have been trained on this dataset. We test both our method and baselines (using available code)
on each video’s first 8 seconds (due to the models’ constraints): we extract onsets from the generated audio following [6] and
compare them with the labeled sound events. We assess performance using accuracy, average precision (AP), and F1-score. We
provide the results in Table 2 and visualize the spectrograms in Figure A8. MMAudio achieves significantly better performance
in these model-free metrics. Note that a high AP (not accuracy or F1) can be achieved by generating very few onsets (e.g.,
silent/noise), which is the case in Seeing&Hearing.



Audio prompt: rhythmic splashing and lapping of water
IB-score (Movie Gen Audio): 42.74
IB-score (MMAudio, ours): 53.95

Audio prompt: creamy sound of mashed potatoes being scooped
IB-score (Movie Gen Audio): 30.94
IB-score (MMAudio, ours): 10.52

Figure A2. Examples of videos in Movie Gen Audio Bench that are well/not well covered by our training data. Left: with a familiar concept
in our training data (516 swimming videos in the VGGSound training set), MMAudio achieves a higher IB-score. Right: with an unfamiliar
concept (there are no videos about mashed potatoes in VGGSound [1], according to the provided labels), MMAudio attains a significantly
lower IB-score.

D. Ablations on Filling in Missing Modalities

Among our training data, VGGSound is the only tri-modal (with class names as text) dataset while all others are audio-text.
For other data, we replace missing visual modalities (CLIP and Sync features) with end-to-end learnable embeddings (∅v

and ∅syn ) and missing text modalities with the empty string (∅t ). We believe other methods to fill in missing modalities
would be similarly effective since the deep net likely adapts. Indeed, replacing the missing modalities with either all learnable
embeddings or zeros yields no significant difference (Table A3). Note, we also drop modalities randomly during training to
enable classifier-free guidance, which enhances the model’s robustness to missing modalities.

Method FDPaSST↓ IS↑ IB-score↑ DeSync↓

Ours 70.19 14.44 29.13 0.483
With all learnable 70.13 14.63 29.23 0.494
With zeros 69.91 14.60 29.22 0.496

Table A3. Comparisons of different methods to fill in missing modalities. As expected, there is no significant difference as the deep net
learns to adapt.

E. Details on Data Overlaps

We note that there are training and testing data overlaps among commonly used datasets for video-to-audio generation. For
example, AudioSet [9] is commonly used to train VAE encoders/decoders but it contains test set data from VGGSound [1] and
AudioCaps [24]. Additionally, AudioCaps is often used to train text-to-audio models [70], which is then used as the backbone
for video-to-audio models which evaluate on VGGSound [1] – however, part of the VGGSound test set overlaps with the
AudioCaps training set. Moreover, AVSync15 [72], which is sometimes used jointly with VGGSound for training/evaluating
video-to-audio algorithms [73], contains severe cross-contamination with VGGSound. This results in biased evaluations in
both VGGSound and AVSync15. To our best knowledge, this data contamination is not yet addressed in the video-to-audio
community. We thank Labb et al. [31] for raising this issue in the audio captioning field, which has helped us identify this
problem.

Table A4 summarizes the observed overlaps. The overlaps with WavCaps [46] and Freesound [33] have been included as
part of their release, which we do not repeat in our table.

We have carefully removed from our training data (AudioSet [9], AudioCaps [24], Clotho [5], Freesound [33], WavCaps [46],
and VGGSound [1]) anything that overlaps with any of the test sets (VGGSound and AudioCaps). Additionally, we have also
removed from our training data the test set of Clotho [5]. Since most baselines have been trained on VGGSound, we elect not
to evaluate on AVSync15.



Test sets (number of samples) Training sets

AudioSet AudioCaps VGGSound AVSync15

AudioCaps (975) 580 (59.5%) - 147 (15.1%) -
VGGSound (15,496) 132 (0.9%) 13 (0.1%) - 59 (0.4%)
AVSync-15 (150) - - 144 (96.0%) -

Table A4. Overlaps between training and test sets of different datasets. The percentage denotes the proportion of overlapping data in the
entire test set. “-” means that we did not compute this data (we do not train or test on AVSync15).

F. Details on the Audio Latents

As mentioned in the main paper, we obtain the audio latents by first transforming audio waveforms with the short-time Fourier
transform (STFT) and extracting the magnitude component as mel spectrograms [57]. Then, spectrograms are encoded into
latents by a pretrained variational autoencoder (VAE) [27]. During testing, the generated latents are decoded by the VAE
into spectrograms, which are then vocoded by a pretrained vocoder [35] into audio waveforms. Table A5 tabulates our STFT
parameters and latent information.

For the VAE, we follow the 1D convolutional network design of Make-An-Audio 2 [15] with a downsampling factor of
2 and trained with reconstruction, adversarial, and Kullback–Leibler divergence (KL) objectives. We note that the default
setting leads to extreme values in the latent at the end of every sequence (±10σ away). To tackle this problem, we have
applied the magnitude-preserving network design from EDM2 [22], by replacing the convolutional, normalization, addition,
and concatenation layers with magnitude-preserving equivalents. While this change removes the extreme values, it leads to no
significant empirical performance difference. We train the 16kHz model on AudioSet [9], following Make-An-Audio 2 [15].
For the 44.1kHz model, we increase the hidden dimension from 384 to 512 and train it on AudioSet [9] and Freesound [33] to
accommodate the increased reconstruction difficulty due to a higher sampling rate.

For vocoders, we use the BigVGAN [35] trained by Make-An-Audio 2 [15] in our 16kHz model. For our 44.1kHz model,
we use BigVGAN-v2 [35] (the bigvgan_v2_44khz_128band_512x checkpoint).

Model variants Latent frame rate # latent channels # mel bins # FFTs Hop size Window size Window function

16kHz 31.25 20 80 1024 256 1024 Hann
44.1kHz 43.07 40 128 2048 512 2048 Hann

Table A5. Short-time Fourier transform (STFT) parameters and latent information.

G. Network Details

G.1. Model Variants
Our default model generates 16kHz audio encoded as 20-dimensional, 31.25fps latents (following Frieren [67]), with
N1 = 4, N2 = 8, h = 448. We refer to this default model as ‘S-16kHz’. To faithfully capture higher frequencies, we also train
a 44.1kHz model (‘S-44.1kHz’) that generates 40-dimensional, 43.07fps latents while all other settings are identical to the
default. To scale up the high-frequency model, we first double the hidden dimension to match the doubled latent dimension,
i.e., we use N1 = 4, N2 = 8, h = 896 and refer to this model using ‘M-44.1kHz’. Finally, we scale the number of layers, i.e.,
N1 = 7, N2 = 14, h = 896 and refer to this model via ‘L-44.1kHz’. These model variants are summarized in Table A6.

G.2. Projection Layers
We use projection layers to project input text, visual, and audio features to the hidden dimension h and for initial aggregation
of the temporal context.

Text feature projection. We use a linear layer that projects to h, followed by an MLP.

Clip feature projection. We use a linear layer that projects to h, followed by a ConvMLP with a kernel size of 3 and a
padding of 1.



Model variants Params # multimodal blocks N1 # single-modal blocks N2 Hidden dim h Latent dim Time (s)

S-16kHz 157M 4 8 448 20 1.23
S-44.1kHz 157M 4 8 448 40 1.30
M-44.1kHz 621M 4 8 896 40 1.35
L-44.1kHz 1.03B 7 14 896 40 1.96

Table A6. Summary for different MMAudio model variants. Time is the total running time to generate one sample with a batch size of one
after warm-up and excludes any disk I/O operations on an H100 GPU.

Sync feature projection. We use a 1D convolutional layer with a kernel size of 7 and a padding of 3 that projects to h, an
SELU [28] activation layer, followed by a ConvMLP with a kernel size of 3 and a padding of 1.

Audio feature projection. We use a 1D convolutional layer with a kernel size of 7 and a padding of 3 that projects to h, an
SELU [28] activation layer, followed by a ConvMLP with a kernel size of 7 and a padding of 3.

G.3. Gating

The gating layers are similar to the adaptive normalization layers (adaLN). Each global gating layer modulates its input
y ∈ RL×h (L is the sequence length) with the global condition cg as follows:

Gatingg(y, cg) = y · 1Wg(cg). (A1)

Here, Wg ∈ Rh×h is an MLP, and 1 is a L× 1 all-ones matrix, which “broadcasts” the scales to match the sequence length L
– such that the same condition is applied to all tokens in the sequence (hence global).

Similarly, for per-token gating layers, the frame-aligned conditioning cf is injected into the audio stream for precise feature
modulation via

Gatingf (y, cf ) = y ·Wf (cf ), (A2)

where Wf ∈ Rh×h is an MLP. Different from Equation (A1), the scales are applied per token without broadcasting,

G.4. Details on Synchronization Features

We use the visual encoder of Synchformer [19] to extract synchronization features. We use the pretrained audio-visual
synchronization model trained on AudioSet, provided by Iashin et al. [19]. As input, we obtain frames at 25 fps. Synchformer
partitions these frames into overlapping clips of 16 frames with stride 8 and produces features of length 8 for each clip. Thus,
for a video of length Tsec seconds, the sequence length of the synchronization features is

Lsync = 8

(⌊
25Tsec − 16

8

⌋
+ 1

)
. (A3)

The corresponding feature fps is

FPSsync =
Ltext

Tsec
. (A4)

In this paper, we experimented with Tsec = 8 and Tsec = 10. In both cases, FPSsync is exactly 24. Additionally, we introduce a
learnable positional embedding of length 8 (matching the number of features in each clip processed by Synchformer) that is
added to the Synchformer features, as illustrated in Figure A3.

G.5. Illustration of the “sum sync with visual” Ablation

Figure A4 illustrates the network architecture for the “sum sync with visual” ablation in the “conditional synchronization
module” paragraph. The visual features are upsampled using the nearest neighbor to match the frame rate of the synchronization
features. This architecture has a worse FDPaSST, IB-score, synchronization (DeSync) but a better inception score (IS), which
we hypothesize is due to the increased number of visual tokens in the upsampling step, leading to finer-grained computations.
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Figure A3. Synchformer feature extraction.

G.6. Visualization of Aligned RoPE

To visualize the effects of using aligned RoPE [59], we compare the dot-product affinity of two sequences 1250×C and 164×C

when RoPE is applied. Here, 250 represents the audio sequence length (31.25 fps for 8 seconds), 64 represents the visual
sequence length (8 fps for 8 seconds), and C = 64 is the channel size. Concretely, we visualize

RoPEdefault(1
250×C)

(
RoPEdefault(1

64×C)
)T

, (A5)

and,

RoPEaligned(1
250×C)

(
RoPEaligned(1

64×C)
)T

, (A6)

in Figure A5. Temporal alignment is attained when we use aligned RoPE.

H. Training Details

Training setup. Unless otherwise specified, we used the same set of hyperparameters for all model sizes. To train the
models, we use the base learning rate of 1e-4, with a linear warm-up schedule of 1K steps, for 300K iterations, and with
a batch size of 512. We use the AdamW optimizer [26, 41] with β1 = 0.9, β2 = 0.95, and a weight decay of 1e-6. If the
default β2 = 0.999 was used instead, we notice occasional training collapse (to NaN). For learning rate scheduling, we reduce
the learning rate to 1e-5 after 80% of the training steps, and once again to 1e-6 after 90% of the training steps. For model
exponential moving average (EMA), we use the post-hoc EMA [22] formulation with a relative width σrel = 0.05 for all
models. For training efficiency, we use bf16 mixed precision training, and all the audio latents and visual embeddings are
precomputed offline and loaded during training. Table A7 summarizes the training resources we used for each model size.

Model Number of GPUs used Number of hours to train Total GPU-hours

MMAudio-S-16kHz 2 22 44
MMAudio-S-44.1kHz 2 26 52
MMAudio-M-44.1kHz 8 21 168
MMAudio-L-44.1kHz 8 38 304

Table A7. The amount of training resources used for each model size. H100 GPUs are used in all settings.
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Figure A4. Illustration of the “sum sync with visual” ablation.
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Figure A5. Affinity visualizations between two sequences with different frame rates when default/aligned RoPE embeddings are used. Left:
with default RoPE, the sequences are not aligned. Right: with our proposed aligned RoPE, we attain temporal alignment.

Balancing multimodal training data. Since we have significantly more audio-text training data (951K) than audio-text-
visual data (180K), we balance the dataset by duplicating the audio-text-visual samples before random shuffling in each epoch.



By default, we apply a 5X duplication for a rough 1:1 data sampling ratio. For the “medium” and “large” models, we reduce
the duplication ratio to 3X to mitigate overfitting.
Duplicated videos. We observe VGGSound dataset [1] contains duplicated videos, likely due to multiple uploads of the
same video to YouTube under different video IDs. For instance, videos 4PjEi5fFD6A (in training set) and FhaYvI1yrUM
(in test set) are the same video.3 In Appendix E, we remove train-test sets overlaps by comparing the video IDs, though this
method does not eliminate repeated uploads. Since prior works have been trained on the same dataset, our training scheme
remains a fair comparison.

I. Additional Visualizations

We provide generated samples and comparisons with state-of-the-art methods on our project page https://hkchengrex.
com/MMAudio/video_main.html. Below, we provide additional spectrogram visualizations comparing our method
with prior works in Figures A6 to A8.
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Figure A6. Left: our method can precisely capture the distinct audio event of striking a golf ball. Right: a dog barks in successive bursts.
Our generation does not line up with the ground-truth as precisely due to the ambiguous nature of video-to-audio generation, but does
capture the rapid bursts.

3Other uploads of this video that are not part of the VGGSound dataset include 1MQkMdlBezY and vHmRikW9axQ.

https://hkchengrex.com/MMAudio/video_main.html
https://hkchengrex.com/MMAudio/video_main.html
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Figure A7. Left: when visible audio events (e.g., when a string is played) can be clearly seen, MMAudio captures them much more precisely
than existing methods. Right: in a complex scenario, MMAudio does not always generate audio aligned to the ground-truth (as common in
the generative setting) but the generation is often still plausible.
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Figure A8. Comparisons of prior works with MMAudio on the Greatest Hits [48] dataset.
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