o : Synchronized Multi-View Diffusion for Painting Anything 3D

Supplementary Material

A. Detailed Discussion on Related Works
A.l. Baseline Methods

In this section, we review the most representative base-
line that we compared during the evaluation and discuss its
strengths and weaknesses. Other great close-source meth-
ods, such as Meta 3D TextureGen [3], are removed from the
comparison scoop. We omit the SOTA method Text2Tex [5]
in this report due to the extensive evaluation in previous lit-
erature [16, 25].

TEXTure. TEXTure [|8] presents a method for generat-
ing 3D textures from textual descriptions using a pretrained
depth-to-image diffusion model. TEXTure employs an iter-
ative approach to ensure consistent texturing from multiple
viewpoints by dividing rendered images into “keep”, “re-
fine”, and “generate” regions. It supports texture transfer
and editing through both text prompts and user input. How-
ever, the method can produce global inconsistencies when
handling complex geometries or viewpoints that do not fully
capture the model, which the authors identify as areas for
future improvement.

Paint3D. Paint3D [25] is a two-stage generative method.
In the first stage, it utilizes ControlNet to generate textures
from individual viewpoints. In the second stage, it inno-
vatively proposes direct texture generation in UV space.
Paint3D [25] employs a UV position map as the control
signal to train a ControlNet [27], leveraging the generative
capabilities of existing diffusion models to produce corre-
sponding textures. However, due to significant differences
between texture map samples and image samples, the dif-
fusion network inherently lacks robust texture generation
capabilities. Moreover, during the control generation pro-
cess using the UV position map, the diffusion model tends
to assign similar colors to atlas textures that are closer in
2D mapping space, rather than to the 3D space represented
by the control channels. As a result, Paint3D [25] performs
poorly on most automatically unwrapped complex texture
maps, leading to numerous instances of misaligned textures.
SyncMVD. SyncMVD [16] proposes a zero-shot tex-
ture generation method. It addresses the limitations of
asynchronous diffusion that plague traditional project-and-
inpaint techniques. While previous approaches generate
textures from individual views without adequate synchro-
nization, leading to inconsistencies, SyncMVD synchro-
nizes the diffusion processes for multi-view generation.
This innovative method facilitates early consensus in tex-
ture generation by sharing denoised content across over-
lapping views during each denoising step. As a result,

SyncMVD [16] achieves consistent textures that exhibit re-
markable details and coherence across various perspectives.
We highlight that SyncMVD does not utilize a multi-view
diffusion model for generating multi-view images. Instead,
SyncMVD retains the iterative camera pose and subject
framework generated by single-view diffusion, which often
leads to multi-faces problems due to the lack of constraints
between multiple views.

A.2. Border Related Methods

In this section, we discuss the other related works that
share similar designs that are out of our evaluation’s scope.
Meta 3D TextureGen. Meta 3D TextureGen [3] proposes
a two-stage texture generation method. In the first stage,
normal and position controls are used to generate aestheti-
cally pleasing multi-view images, which are then weighted
and projected based on the mesh surface normals and view
directions to obtain an initial UV texture map. In the sec-
ond stage, the process continues in the UV space, where
normal and position controls are again employed for in-
painting. Finally, texture enhancement is applied to per-
form super-resolution and enrich texture details. Through
this innovative approach, Meta 3D TextureGen can gener-
ate high-definition textures that are rich in detail and aes-
thetically pleasing with Emu [6] base model. However,
due to the relatively independent multi-view generation in
the first stage, there may be a lack of consistency between
the textures across different views and may be potentially
vulnerable to the Janus problem. Additionally, the limited
number of viewpoints in the first stage can lead to signifi-
cant unobserved areas for objects with complex occlusions.
This poses challenges for the subsequent texture inpainting
and enhancement processes, which are performed entirely
in UV space. Since the code for Meta 3D TextureGen has
not been open-sourced, we do not include it in our experi-
mental comparisons.

Unique3D. Unique3D [21] is an innovative image-to-3D
framework capable of efficiently generating high-quality
3D meshes from single-view images, demonstrating both
high fidelity and robust generalization capabilities. It in-
tegrates multi-view diffusion models, multi-scale upsam-
pling strategies, and the proposed ISOMER algorithm, en-
abling the generation of detail-rich textured meshes in 30
seconds. Similar to our method, Unique3D uses a coarse-to-
fine manner to generate multi-view high-resolution images.
Differently, Unique3D targets simultaneous geometry and
texture generation, and 3D consistency is encouraged but
not strictly aligned. For example, it upscales 256 x 256 im-

ages with a multi-view ControlNet [27] and further boosts
the resolution to 2k with a view-separate upscaling model
without any synchronization.

CLAY. CLAY [28] is a large-scale 3D generation model
that can produce high-quality 3D geometry and materials
from text or image inputs. It employs a multi-resolution
VAE and a minimal latent diffusion transformer, supporting
various control modalities such as multi-view images and
voxels to facilitate precise 3D asset creation. The texturing
module of CLAY [28] is also built upon MVDream [19],
they modify it by adding additional channels and modal-
ities to support physical-based rendering (PBR), Control-
Net [27] to achieve view control, and uses LoRA [1 1]-based
fine-tuning. CLAY [28] generates the 4 orthogonal views of
images, and similar to Paint3D [25] inpaint and upscale the
PBR images in UV space. We argued inpainting directly on
UV space is vulnerable to complicated UV unwrapping, es-
pecially the coarse UV is generated from a low coverage of
4 views at a resolution of 256 x 256 with great loss in de-
tail. Note that CLAY focuses on PBR generation, and it has
the image-prompt ability, whereas we more focus on text-
to-texture generation. As the implementation is not public
available, we exclude CLAY in our evaluation.

B. Implementation Details
B.1. Network

We utilize the MVDream [19] as the base model of
T2MV Dy of SMG, and we add the control module 7, and
train it with the same training scheme of ControlNet [27].
Different from other controlled MVDream methods [14]
which only controls a single view, we densely control multi-
view for better shape alignment. For synchronized refine-
ment, we choose the SDXL [17] as the base model for 121
refinement Dyy1, where two pre-trained ControlNets [8, 22],
7¢ and 7, are deployed. During refinement, the per-view
latents 2! are with 128 x 128 resolution, and they are syn-
chronized on Ty, with 512 x 512 resolution. In all SMG
processes, models are worked on N = 8 views with evenly
distributed azimuth angle and interleaved elevation of +30°.

B.2. Control Strength of 121 Finer Painting

In the Synchronized Multi-view Generation (SMG) pro-
cess, we employed a refinement model composed of two
control modules. The first module, denoted as 7, is de-
signed to provide low-resolution multi-view (MV) images
that are free of Janus artifacts and maintain multi-view con-
sistency for the refinement stage. The second module, 7,
offers geometric guidance, ensuring that the multi-view re-
finement process is fully aligned with the underlying mesh
structure. These two components are controlled by the pa-
rameters s; and sg, which allow for flexible user-defined
configurations. If the user is satisfied with the generated

MYV images, a relatively high s, can be set to maintain con-
sistency, while s, can be reduced to minimize divergence,
as demonstrated in the case of the ‘Blue Hippo’ in the Fig. .
Conversely, if the user is dissatisfied with the MV images or
desires more creative diversity, a lower s; and higher s, can
be used, as shown in the ‘Unicorn’ case. It is important to
note that without any s;, our refinement model may face
Janus issues similar to those observed in SyncMVD [16]
and TEXTure [18] illustrated by the ‘Blue Hippo’ case in
Fig.

B.3. Spatial-aware 3D Inpainting

In Sec. 3.2 of the main paper, we briefly described the ex-
ecution flow of the algorithm. Here, we provide a more de-
tailed explanation of the algorithm. Spatial-aware 3D In-
painting (S3I) is designed to inpaint unobserved regions af-
ter multi-view projection. We sample the mesh into a dense
point cloud, enabling us to apply coloring at the point cloud
level to capture structural information. S3I is a learning-
free method that propagates color from observed regions to
unobserved regions.

Since the propagation is based on the k-nearest neigh-
bors (KNN) algorithm, there can be errors in propagation
across planes, particularly in seam areas. To address this,
we calculate the normal vector for each point, incorporat-
ing it into the weight calculation to prevent color diffusion
across non-coplanar surfaces. The pseudocode for the de-
tailed algorithm execution is as follows:

B.4. Spatial-Aware Seam-Smoothing Algorithm.

In Sec. 3.3 of the main paper, we introduce the imple-
mentation concept of the Spatial-Aware Seam-Smoothing
algorithm. It is used to correct color discontinuities at
seams after super-resolution in the UV space. Similar to
S31, it employs k-nearest neighbor (KNN) search to per-
form weighted color averaging. The detailed pseudocode
for the algorithm is as follows.

B.5. Unprojection Reduction Algorithm

After generating consistent multi-view images, we apply
weighted projection to obtain the texture UV map. How-
ever, due to occlusion in 3D objects, this can lead to pro-
jection errors and artifacts in the UV map, as shown in Fig-
ure 3. To address this, we determine occlusion relationships
and reduced the affected projection areas. The specific algo-
rithm workflow is as follows: we first extract the 3D coor-
dinates for each valid pixel in the UV map, generating a 3D
point cloud. Then, using the occlusion detection algorithm
proposed in [12], we mark occluded points for each view.
Finally, these occlusion marks are mapped back onto the
UV map, and regions marked as occluded” are excluded
from projection.

Tile Control Strength s,

0 Geometry Control Strength s, 1
1
&
<
S)
C
o
n
o
c
S
©)
Q
=
0 Geometry Control Strength s, 1

Figure 1. High Flexibility in Proposed SMG Design. With two refinement modules 74, 7; and their corresponding control strength
s4, s¢, MVPaint can provide user versatile choices of texture generation. With a larger strength of s;, the generated results will have more
alignment with coarse MV images. With a larger strength of s4, the generated results will have more creativity (see the ‘Unicorn’ case)
while with a higher risk of Janus problem (see the ‘Blue Hippo’ case).

Algorithm 1: Spatial-aware 3D Inpainting

Algorithm 2: KNN Seam Smoothing Algorithm

Input: colored_points: A set of points with color
information
color_mask: boolean array where frue indicates
points with valid color
n: number of nearest neighbors for KNN search
Output: updated_colored_points: A set of points
with updated color information

Function

update_colored_points (colored_points,

colored_mask) :
points <— colored_points.points

colors < colored_points[color_mask].colors

normals < calculate surface normals of points

unknown_points <— points[color_mask]

unknown_normals <— normals[color_mask]

tree < KDTree(points, n)

distances, indices < tree(unknown_points)

neighbors_normals < Index_Select(normals,
indices)

cos <— Cosine_Similarity(unknown_normals,
neighbors_normals)

distance_score < Normalize(1 / distances)

weight < cos * distance_score

coloring round < 0

while stage == "uncolored” or coloring_round
> 0do

for point in unknown _points do
neighbors < KNN(points, n)

new_color < Weighted-Average(weight,
neighbors)
colored_points.assign_color(point,
new_color)
Calculate total number of colored points
if coloring progress then
| Increment coloring round
else
Decrease coloring round or exit loop if
L no further progress

| return colored_points

B.6. Discussion on UV Space Tiling

Depending on the specific generation requirements, our
UV upscale model Dyp can be replaced by a refinement
network Dryg. Similar to the tiling network in the second
stages in Paint3D [25] and Meta 3D TextureGen [3], Dy g
is a diffusion model controlled by a tiling control module
Tile and a position map control module 7,5. The position
map is a UV map T Where the 3D position of the cor-
responding mesh surface replaces the channel values. For-
mally, this optional module can be written as

Input: colored_points: A set of points with color
information, where each row is [xyzrgb]

seam_mask: boolean array where true indicates

seam points

n: number of nearest neighbors for KNN search

Output: new_color: Smoothed color for seam

points
Function knn_seam_smooth (colored_points,

seam_mask, n_neighbors) :
non_seam_points <—

colored_points[—~seam_mask] normals <
calculate surface normals of colored_points
seam_normals < normals[seam_mask]
non_seam_normals < normals[—seam_mask]
colors <— non_seam_points.colors
tree < KDTree(non_seam_points, n)
distances, indices <— tree(seam_points)
seam_neighbors_normals <—
Index_Select(non_seam_normals, indices)
cos < Cosine_Similarity(seam_normals,
seam_neighbors_normals)
distance_score < Normalize(1 / distances)
weight <— cos * distance_score
for point in seam_points do
neighbors < KNN(colored_points, n)
new_color < Weighted-Average(weight,
neighbors.colors)
colored_points.assign_color(point,
new_color)
return colored_points.colors

uv
Trite = Drie(2 5 Tey Tpose; Tiiles Tpos)- (1

Different from previous literature [3, 25], we find the
UV tiling process is very vulnerable to continuity or the UV
wrapping, leading to obvious seams on 3D mesh when UV
atlas is packed randomly like Xatlas [24]. Thus, we only
treat this module as an opt for Dyp if users want to pursue
extreme details. We give an example of a comparison of UV
upscaling and tiling in Fig. 2, where tiling can increase the
upper bound of generation quality, while still suffering from
stability. Thus, we use Dyp as our default super-resolution
model, and it is very important to point out that all the re-
sults in this work are generated by Dyp.

C. Detailed Evaluations
C.1. Detailed Evaluation Settings

Evaluation Elevation Selection. During the comparative
experiments, we observed that each method predefined its

optimal elevation angle, complicating the selection of a uni-
fied rendering perspective for comparison. Our approach
involved setting the elevation angle for Paint3D and TEX-
Ture to 30°, while SyncMVD utilized a rendering perspec-
tive comprising eight evenly distributed views at 0°and two
views at £60°, which we retained. Our proposed method
also employed four views at 30°and four views at —30°.
Consequently, we selected 15° as the testing elevation and
densely rendered 16 perspectives to ensure the validity of

‘
.
- o “ ‘
-
‘ '
/e ¢ %
’ay

3

Figure 2. Discussion on UV upscale or tiling. Given groundtruth
low-resolution UV map (first row), UV upscaling Dyp generates
sharp and clean textures (second row), UV tiling Dy g will add
intricate but acceptable details (the left case in the third row) or

V-
V-
-

b2,

wrong details (the right case in the third row).
<
|
N I ! I
N
AN

Figure 3. Illustration of Projection Error. When the Unprojec-
tion Reduction Algorithm is not used, occlusions may cause the
color of the occluding object to be projected onto the occluded ar-
eas, resulting in artifacts. However, by applying the Unprojection
Reduction Algorithm, this issue can be effectively resolved by pre-
venting incorrect color projections onto occluded regions.

the evaluation. We also conduct additional ablation study
on such setting design in Sec. D.1.

C.2. Quantitative and Qualitative Results

Additional Qualitative Results of T2T Evaluation. We
provide additional qualitative results to showcase MV-
Paint’s outcomes, including extra comparisons with base-
line methods on border categories in Fig. 7). From the qual-
itative results, we can conclude that SyncMVD [16] can
generate good results on general lifeless objects like shoes,
bags, etc. While it has severe Janus problems on gener-
ating objects with heads, see the Santa, mouse, and eagle
cases. Paint3D [25]’s performance is highly related to UV
wrapping or texture complexity. When given easy prompts
are given like ‘copper cup’ or ‘black boots’, Paint3D [25]
can produce decent results when texture complexity is high
like ‘Santa’ or ‘eagle’ it generates results with artifacts and
seams. TEXTure [8] generally generates texture with high
image saturation with large-scale artifacts and severe Janus
problems, which accords with the user study in the main pa-
per Tab. 1 and Tab. 2 where TEXTure [8] has the least user
appealing scores, even though it has good subject evaluation
results.

Quantitative Results of Ablation on SMG Designs. We
also report the quantitative results of the ablation study on
SMG designs on GSO benchmark in Tab. |. Different from
the results in in-domain analysis in Tab. 3 of the main paper
where ‘w/o MV Diff’ influence the most to the quantitative
results, in cross-domain benchmark which mostly consists
of scan objects, the influence of each design is much more
even. What accords with the Objaverse [7] benchmark re-
sults is that the full design achieves the best objective met-
rics and subjective metrics except for CLIP scores.

Table 1. Quantitative Results on SMG Designs on GSO Bench-
mark.

User Study
Method ‘ FID| KID| CLIP? Overall T Seamlesst Consistency?t
w/o MV Sync. 2572 531 22.49 3.98 4.19 4.04
w/o MV Paint 2523 517 23.36 4.04 3.99 3.84
w/o Geo. Refinement | 25.56 5.27 22.49 3.85 3.87 4.14
Full Design ‘ 20,02 312 2325 4.13 4.51 4.21

D. Additional Experiments
D.1. Ablation on View Selection

We conducted ablation experiments on the choice of the
number of viewpoints based on the main paper’s ablation
study. Specifically, we tested several configurations: N = 4
with elevations ¢ = 0°, N = 8 with elevation ¢ = 0°
N = 16 with elevation at ¢ = 0°; N = 8 with elevations
interleaved ¢ = +30°; and N = 16 with elevations inter-
leaved between ¢ = 4+30°. All the view azimuths 6 are uni-

Paint3D

o

£

]

(2]

5

8

[

[=]

% SyncMVD Paint3D
£ P

[i

CR o v, /

TexPainter
-SD1.5

Figure 4. Qualitative results of base model ablation. Qualitative comparision between default setting (using default base models), and same base model

setting on the same case are visualized.

formly distributed in all experiments. Our experiments were
conducted on the Objaverse [7] dataset, we use the testing
elevation ¢ = 15° and evaluation metrics. We organize
quantitative results and report in Tab. 2. From the results,
we observe that interleaved elevations at ¢ = £30° yield
better viewpoint coverage, achieving improved metrics at a
novel elevation of 15°. Additionally, we found that increas-
ing N from 4 to 8 results in significant metric improve-
ments, while further increasing to 16 leads to a decline in
metrics. This is attributed to the high number of indepen-
dently generated viewpoints during the refinement phase,
which causes excessive overlap and leads to over-smoothed
or blurry textures, resulting in lower performance metrics.

Table 2. Quantitative Results on View Number on Obja-
verse [7] Benchmark.

View Setting | FID| KID| CLIPt
N=4,¢=0° 3548 1124 2321
N=8¢=0° 2345 412 2048

N =16,¢ =0° 25.71 451 21.45

N =8,¢ = =£30° 20.89 345 19.87
N =16,¢ = £30° | 21.58 3.87 20.21

D.2. Runtime Evaluation

We conducted runtime tests to comprehensively evalu-
ate the proposed method’s performance. Initially, we per-
formed a detailed analysis of the average time required for
each module, as illustrated in Tab. 3. The total runtime of
our pipeline was measured at 97.79 seconds, with the ma-
jority of the computational load concentrated in the multi-
view refinement step, which accounted for nearly 80% of
the overall runtime with SDXL [17] model.

A runtime comparison of our method against several
SOTA approaches is also conducted. Experiments were
executed on a uniform hardware environment utilizing an

Table 3. Runtime Evaluation of MVPaint pipeline.

L SMG III. UVR
Stage | vy 1 TS sr R seams | Overal!
Time (s) | 1051 78.04 082 830 012 | 9779

single H800 GPU, ensuring consistency in testing condi-
tions. Notably, the model loading time and the rendering
time for intermediate results or video outputs were excluded
from the reported statistics. As illustrated in the following
Tab. 4, despite employing a greater number of steps and
higher multi-view resolutions, our runtime remains on par
with SOTA methods.

Table 4. Runtime Comparison between the MVPaint and
SOTA methods.

Methods | TEXTure [18] Paint3D [25] ~ SyncMVD [16] | MVPaint
Time (s) | | 142.52 104.36 87.32 | 9779

D.3. Ablation on Base Model

To investigate the generality of the proposed method
and verify that its performance improvement stems from
the pipeline design rather than merely the base model up-
grade, we conducted ablation studies on the base model.
Specifically, we unified the base model across all methods
to SD1.5. In detail, we replaced SDXL in our method with
SD1.5 [1] and substituted SD2.1-depth in TEXTure [18]
and TexPainter [26] with SD1.5 along with a depth con-
trolnet. We performed the same evaluations on both the
Objaverse and GSO benchmarks, and the qualitative results
are presented in Tab. 5. The results demonstrate that our
method achieves the second-best performance in terms of
FID [10] and KID [4] across all settings, even when using
the SD1.5 model, second only to our full setting. Addition-
ally, like VCD-Texture [15] and P3G [13] we incorporated
the CLIP-Var metric to reflect semantic consistency across
different viewpoints, where our method achieves the best

Table 5. Quantitative results of base model ablation.

Objaverse Benchmark GSO Benchmark
Method FID, KID| CLIPt CLIP-Varf | FID] KID| CLIP{ CLIP-Vart

TEXTure ‘ 2803 7.60 20.30 87.41 2476 5.50 23.44 83.41
Paint3D 2528 519 19.27 84.21 3729 1024 2121 79.81
SyncMVD 2699 572 20.19 85.41 2696 537 23.08 83.47
TexPainter 2496 517 19.71 88.77 2893 597 21.89 83.71
TEXTure-SD1.5 27.61 5.10 20.42 87.82 2401 444 23.39 83.25
TexPainter-SD1.5 | 25.62 4.54 19.52 88.72 2977 638 21.96 82.83
Ours-SD1.5 2254 3.90 19.53 88.27 2200 334 2229 83.55
Ours 20.89 345 19.87 88.72 ‘ 2002 312 2325 85.61
After T2MV After 121 After Inpainting After UV Refinement

Figure 5. UV visualization after different stages. We visualize the
generated UV map after each stage. Noted that we do not fill the hole
in early stages for better coverage visualization, which causing seams in
rendered images.

performance on the GSO benchmark. The qualitative com-
parisons, shown in Fig. 4, further illustrate that our method
retains strong visual quality and avoids multi-head issues
even with the SD1.5 base model. Overall, the ablation study
validates the effectiveness of our proposed approach.

D.4. UV Visualizations

To better illustrate the generated UV in different stages,
we visualized the generated UV map in each intermediate
stages in Fig. 5. In the T2MV stage, the generated UV is
in low resolution and quality due to the limited resolution
of T2MV model, while after 121 stage, the UV maps are
more vivid with more details. In both T2MV and 121 stages,
the UV coverage is small because of only 8 views are used.
After 3D inpainting the missing coverage in UV spaces is
filled, and the final stage refine the texture map directly and
fill all the empty space in UV. Note that in Fig. 5, we leave
the uncovered UV space empty to better illustrate the UV
coverage in early stages, so resulting seams in rendered im-
ages.

D.5. Synchronization Visualization

We also visualize the results of different synchronization
setting in T2MV stage in Fig. 6. Four settings are tested,
applying synchronization in the image space and the latent
space with 1 step and 40 steps. As from the visualized
results, we can observe that synchronizing in latent space
usually fails with over-smooth textures due to the small res-
olution in latent space. However, synchronizing textures in

Latent 40 Steps

Latent 1 Step Image 40 Steps Image 1 Step

A fawn doll

Sneakers

Figure 6. Visualization of synchronization in T2MYV stage. We visual-
ize the different synchronization setting in T2MV stage, synchronizing in
latent/image space with 1/40 steps.

images space with dense steps will generate noisy results,
due to the lossy compression of VAE. Thus, we choose to
synchronize the mutli-view images in T2MV models in im-
age space for 1 step.

E. Limitations

MVPaint achieves strong spatial consistency and high-
resolution textures, but it also has certain limitations, pri-
marily in three areas: the aesthetic problem and the lack of
image prompt ability.

Aesthetic Problem. Compared to Meta 3D TextureGen [3],
our model exhibits certain deficiencies in the aesthetic qual-
ity of texture generation. This can be attributed partly to
Meta 3D TextureGen’s [3] use of an aesthetically optimized
diffusion model, Emu [6], which generates each viewpoint
independently. While this approach ensures aesthetic ap-
peal, it may compromise the consistency of the textures.
In contrast, our chosen T2MV model, MVDream [19],
is based on SD2 [2], which lacks diversity and aesthetic
quality in its texture outputs. To address this limitation,
we propose the I2I refinement method, which employs a
higher-resolution and more aesthetically pleasing model,
SDXL [!17], to supplement details or re-render the multi-
view images. This significantly enhances the aesthetic qual-
ity. However, increasing the re-rendering intensity raises
the probability of encountering the Janus Problem, thereby
limiting our ability to generate highly aesthetically pleasing
textures. We believe that the emergence of superior T2MV
models in the future will help mitigate the aesthetic short-
comings of our current prototype.

Lack of Image Prompt Capability. Similar to Meta 3D
TextureGen [3] and SyncMVD [16], our MVPaint focuses
on the generation of textures from text, without empha-
sizing the optimization of input diversity; consequently,
we do not address image prompts in this paper. In con-
trast, some single-view methods, such as TEXTure [18]
and Paint3D [25], leverage existing diffusion models along
with plug-and-play image prompt module IP-Adapter [23].

We propose two potential solutions for incorporating image
prompts into MVPaint. One approach is to train a Low-

Rank Adaptation (LoRA) [

] model akin to CLAY [28],

enabling image prompt functionality. Alternatively, we
could directly replace the foundational model of T2MV
with an image-to-multiview (I2ZMV) model, such as Image-
Dream [20].

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

Stability Al Stable diffusion 1.5.

Stability AL Stable diffusion 2.

Raphael Bensadoun, Yanir Kleiman, Idan Azuri, Omri
Harosh, Andrea Vedaldi, Natalia Neverova, and Oran Gafni.
Meta 3d texturegen: Fast and consistent texture generation
for 3d objects. In arXiv preprint arXiv:2407.02430, 2024. 1,
Mikotaj Binkowski, Danica J Sutherland, Michael Arbel, and
Arthur Gretton. Demystifying mmd gans. In /CLR, 2018.
Dave Zhenyu Chen, Yawar Siddiqui, Hsin-Ying Lee, Sergey
Tulyakov, and Matthias Niefiner. Text2tex: Text-driven tex-
ture synthesis via diffusion models. In CVPR, 2023.
Xiaoliang Dai, Ji Hou, Chih-Yao Ma, Sam Tsai, Jialiang
Wang, Rui Wang, Peizhao Zhang, Simon Vandenhende, Xi-
aofang Wang, Abhimanyu Dubey, et al. Emu: Enhanc-
ing image generation models using photogenic needles in a
haystack. In arXiv preprint arXiv:2309.15807,2023. 1,
Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs,
Oscar Michel, Eli VanderBilt, Ludwig Schmidt, Kiana
Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse:
A universe of annotated 3d objects. In CVPR, 2023. 5, 6,

Diffusers. Controlnet depth sdxl 1.0.

, 2023.
Laura Downs, Anthony Francis, Nate Koenig, Brandon Kin-
man, Ryan Hickman, Krista Reymann, Thomas B McHugh,
and Vincent Vanhoucke. Google scanned objects: A high-
quality dataset of 3d scanned household items. In ICRA,
2022.
Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. In NIPS, 2017.
Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li,
Shean Wang, Lu Wang, Weizhu Chen, et al. Lora: Low-rank
adaptation of large language models. In ICML, 2022. 2,
Sagi Katz, Ayellet Tal, and Ronen Basri. Direct visibility of
point sets. In SIGGRAPH, 2007.
Kehan Li, Yanbo Fan, Yang Wu, Zhonggian Sun, Wei Yang,
Xiangyang Ji, Li Yuan, and Jie Chen. Learning pseudo 3d
guidance for view-consistent texturing with 2d diffusion. In
ECCV, 2024.

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

[27]

(28]

Zhiqi Li, Yiming Chen, Lingzhe Zhao, and Peidong Liu.
Mvcontrol: Adding conditional control to multi-view diffu-
sion for controllable text-to-3d generation. In arXiv preprint
arXiv:2311.14494, 2023.

Shang Liu, Chaohui Yu, Chenjie Cao, Wen Qian, and Fan
Wang. Vcd-texture: Variance alignment based 3d-2d co-
denoising for text-guided texturing. In ECCV, 2024.

Yuxin Liu, Minshan Xie, Hanyuan Liu, and Tien-Tsin Wong.
Text-guided texturing by synchronized multi-view diffusion.
In SIGGRAPH Asia, 2024. 1,2, 5, 0,

Dustin Podell, Zion English, Kyle Lacey, Andreas
Blattmann, Tim Dockhorn, Jonas Miiller, Joe Penna, and
Robin Rombach. Sdxl: Improving latent diffusion mod-
els for high-resolution image synthesis. In arXiv preprint
arXiv:2307.01952,2023. 2, 6,

Elad Richardson, Gal Metzer, Yuval Alaluf, Raja Giryes,
and Daniel Cohen-Or. Texture: Text-guided texturing of 3d
shapes. In SIGGRAPH, 2023. 1,
Yichun Shi, Peng Wang, Jianglong Ye, Long Mai, Kejie Li,
and Xiao Yang. Mvdream: Multi-view diffusion for 3d gen-
eration. In /CLR, 2024. 2,

Peng Wang and Yichun Shi. Imagedream: Image-prompt
multi-view diffusion for 3d generation. In arXiv preprint
arXiv:2312.02201, 2023.

Kailu Wu, Fangfu Liu, Zhihan Cai, Runjie Yan, Hanyang
Wang, Yating Hu, Yueqi Duan, and Kaisheng Ma. Unique3d:
High-quality and efficient 3d mesh generation from a single
image. In arXiv preprint arXiv:2405.20343, 2024.

s s Yy

Xinsir. Controlnet tile sdxl 1.0.
,2023.
Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei

Yang. Ip-adapter: Text compatible image prompt adapter
for text-to-image diffusion models. In arXiv preprint
arXiv:2308.06721, 2023.

Jonathan Young. xatlas: A Library for Mesh Parameteriza-
tion. GitHub repository, 2018.

Xianfang Zeng, Xin Chen, Zhongqi Qi, Wen Liu, Zibo Zhao,
Zhibin Wang, Bin Fu, Yong Liu, and Gang Yu. Paint3d: Paint
anything 3d with lighting-less texture diffusion models. In
CVPR,2024. 1,2,4,5,6,

Hongkun Zhang, Zherong Pan, Congyi Zhang, Lifeng Zhu,
and Xifeng Gao. Texpainter: Generative mesh texturing with
multi-view consistency. In SIGGRAPH, 2024.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding
conditional control to text-to-image diffusion models. In
CVPR, 2023. 1,

Longwen Zhang, Ziyu Wang, Qixuan Zhang, Qiwei Qiu,
Angi Pang, Haoran Jiang, Wei Yang, Lan Xu, and Jingyi
Yu. Clay: A controllable large-scale generative model for
creating high-quality 3d assets. In ACM TOG, 2024. 2,

m
=
x
w
-

sMP|) PIUBS

dny 4addony

$42502US

Q_Emmusmm

fo) asmop

sjoog xop|g

2bv3 pleg

opdyorg MO

Figure 7. Additional results with border categories. The 3D models are from GSO [9] and Objaverse [7], and the text prompt is

abbreviated.

