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Figure 1. An illustration of the proposed data augmentation pro-
cess.

1. Anonymous Code Repository
The anonymised code repository for this work is pub-
licly available at https://anonymous.4open.
science/r/GIFNet-821F.

2. Experimental Environment
During training, the batch size is set to 8, and the GIFNet
model is optimised using the Adam optimiser [3] with a
learning rate of 10−3. All experiments are conducted on
an NVIDIA GeForce RTX 3090 GPU. The results for all
competitors are derived from their official implementations
to ensure consistency and reproducibility.

3. Data Augmentation
This section details the process of constructing a joint
dataset, based on the IVIF task, for cross-task interaction
between IVIF-MFIF and IVIF-MEIF tasks.

3.1. Multi-Focus Image Fusion (MFIF)
We propose a data augmentation strategy to generate Multi-
Focus Image Fusion (MFIF) data from the LLVIP Infrared
and Visible Image Fusion (IVIF) dataset [2] (see Fig. 1).

MFIF images typically feature regions that appear
blurred or clear depending on their depth of field. Since ex-
isting fusion datasets do not include depth maps, we utilise a
pre-trained single-view depth estimation model [4] to derive
a depth map ID from the corresponding RGB image Ivis. For
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Figure 2. Examples of artificially generated data for the joint train-
ing of multi-exposure image fusion.

each pixel (x, y), the depth value ID(x, y) is normalised to
the range [0, 1]. Next, a random threshold α ∈ (0, 1) is
applied to segment the depth image into near-focused and
far-focused regions. These regions are represented by bi-
nary masks Bn and Bf, respectively, defined as:

Bn(x, y) =

{
1, Id(x, y) > α
0, Id(x, y) ≤ α

, (1)

Bf(x, y) = 1−Bn(x, y). (2)

Using these binary masks, we simulate focus variation in
RGB images. For the near-focused image In, we introduce
blurring as follows:

In(x, y) =

{
gBlur(Ivis(x,y)), Bn(x, y) = 0

Ivis(x, y) , Bn(x, y) = 1
, (3)

where gBlur represents Gaussian Blur. Similarly, we can
generate the far-focused image If based on the far-binary
map Bf.

3.2. Multi-exposure Image Fusion
We further describe the creation of a joint IVIF-MEIF
dataset to support the training of our GIFNet framework.
Following the approach used for MFIF, we process RGB
images from the LLVIP dataset by altering their exposure
levels to produce overexposed and underexposed images.

In FusionBooster [1], the authors provide a concise in-
formation probe model for decomposing different fusion
results, with the subsequent booster layer being used to en-
hance the separate components. Thus, we take advantage of
this information probe in this approach to produce the over-
exposed and underexposed components of the RGB images.

https://anonymous.4open.science/r/GIFNet-821F
https://anonymous.4open.science/r/GIFNet-821F
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Figure 3. Impact of the main task selection in the inference phase.
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Figure 4. Visualisation of the controllable factor λ in the cross-
fusion gating mechanism (DP: Digital Photography, MM: Multi-
Modal).

As illustrated in Fig. 2, the pre-trained model successfully
adjusts the exposure levels of the input images, producing
high-quality artificial datasets that align with the anticipated
exposure variations. These datasets are crucial for harmon-
ising training across IVIF-MFIF and IVIF-MEIF tasks, re-
ducing domain gaps and enabling consistent feature extrac-
tion.

4. Main Task Selection for the Inference Phase

In our method, we alternatively select the main task and
auxiliary task during training, but this configuration must be
fixed during the inference phase. We conduct experiments
regarding this selection on two unseen fusion tasks: MEIF
and NIR-VIS. As shown in Fig. 3a, when using IVIF as the
main task, GIFNet struggles to control exposure settings in
poorly exposed conditions. Although the task-specific fea-
tures in this branch facilitate the preservation of significant
information, it fails to maintain a natural visual effect (as in
the NIR-VIS task). In contrast, when MFIF is designated
as the main task (Fig. 3b), GIFNet produces visually robust
fused images with appropriate exposure settings and effec-
tive utilisation of both modalities, exhibiting superior gen-
eralisation ability. Therefore, in the test stage, we choose to
consider MFIF as the main task,
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Figure 5. Visualisations of the feature maps from the shared-
encoder and the two branches on various image fusion tasks.

5. An Analysis of the Cross-Task Interaction

During the training process, a cross-fusion gating mech-
anism is used to iteratively optimise the multi-modal and
digital photography branches. In this section, we visualise
the learnable parameter λ of these two branches to provide
an intuitive understanding of the cross-task interaction pro-
cess. As shown in Fig. 4, the controllable factors from these
branches converge to stable values: approximately 0.08 for
the DP branch and 0.18 for the MM branch. This imbalance
can be attributed to the fact that the DP task has ground truth
images for supervised training, thus requiring fewer auxil-
iary features from the other unsupervised trained branch.
Additionally, the curve with a decreasing trend indicates
that the dependency among different branches lessens as the
training process proceeds.

6. Feature Visualisation

We present visualisations of the feature maps from different
components: the shared encoder (S-Enc), the MM branch,
and the DP branch, as shown in Fig. 5. The S-Enc, driven by
the image reconstruction objective, captures foundational
image features, such as target contours and structural de-
tails, which are essential for high-quality image fusion.

The MM and DP branch visualisations reveal the dis-
tinct contributions of each branch to the fusion process. For
instance, in the first case, MM features focus on preserv-
ing salient information from the source inputs, such as ther-
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Figure 6. Qualitative results of the ablation study regarding the
Data Augmentation (DA) technique on the Multi-Exposure Image
Fusion (MEIF) task.

Case Training Data EI VIF SCD AG
w/o DA LLVIP+MFI-WHU 58.64 1.17 0.51 6.22

GIFNet (w/ DA) LLVIP* 111.27 2.52 1.04 12.00

Table 1. Quantitative results from the ablation study of the data
augmentation technique on the unseen MEIF task.

mal targets. Meanwhile, DP features enhance finer details,
capturing sharper edges and more defined textures, as well
as clearer shadows on the ground. Similar patterns are ob-
served across other seen and unseen fusion tasks. Notably,
the additional learning of digital photography features con-
sistently benefits various fusion tasks by producing the nec-
essary features for visually robust outputs, as seen in the
third example (MEIF task) where enhanced texture details
are prominent.

7. Ablation Experiments about the Data Aug-
mentation

This section presents ablation experiments to assess the ef-
ficacy of the proposed data augmentation strategy. Specif-
ically, we examine the performance of the GIFNet model
when trained without augmented data. Instead, we utilise
the widely adopted MFI-WHU dataset [5] to construct the
training set for the MFIF task. Since the shared RGB
modality between the MM and DP tasks is absent, we adapt
the public loss function of the DP branch by incorporat-
ing the ground-truth images from MFI-WHU. The modified
loss function is defined as follows:

Lpub = Lssim(Ir, Igt) + Lmse(Ir, Igt), (4)

where Igt denotes the fully-focused image, Ir is the output
of the reconstruction (REC) branch.

To evaluate the impact of data augmentation, we employ
the multi-exposure image fusion (MEIF) task, examining its
role in enhancing GIFNet’s generalisation capabilities. As
illustrated in Fig. 6, the absence of the proposed data aug-
mentation process led to GIFNet’s inability to adequately
regulate the brightness levels in fused images, resulting in a
noticeable decline in visual quality.

The quantitative results in Table 1 align with these obser-

Table 2. Quantitative results of other methods with code and
model available for the IVIF task. (†: Retraining required)

Method Venue Agnostic Tasks EI AG SCD VIF SF
DDFM ICCV23 × 2 41.13 4.43 1.55 0.51 14.17
SegMIF CVPR23 × 1 58.33 5.97 1.54 0.90 20.61
FBooster IJCV24 × 3† 56.87 5.71 1.56 0.89 16.99
EMMA CVPR24 × 2 58.32 5.81 1.55 0.85 18.42
FILM ICML24 × 4† 58.06 5.96 1.54 0.88 21.69

GIFNet Ours ✓ 6 62.46 6.70 1.61 0.73 25.67

vations, confirming that GIFNet achieves superior perfor-
mance when employing the augmentation technique. The
substantial differences observed across experiments high-
light the pivotal role of shared modalities in minimising
domain gaps between fusion tasks. This demonstrates the
significance of the cross-task interaction paradigm and its
reliance on common modalities to achieve consistent per-
formance improvements.

8. More Comparison with Advanced Methods
In Table 2, we now provide more results and an extra met-
ric of the advanced methods with code and model avail-
able. The differences of advanced methods on these met-
rics are relatively minor. But our low-level task interac-
tion paradigm, supporting more fusion tasks, effectively im-
proves most of these image quality assessments. While the
low-level and high-level tasks are complementary, as illus-
trated in the main page, the reliance on abstract semantics
can degrade fusion quality, and the use of single, specific
features may constrain generalisation ability.

9. More Qualitative Results on Different Fu-
sion Tasks

Infrared and Visible Image Fusion Task: In this subsec-
tion, we present additional results on the IVIF task. As
illustrated in Fig. 7, GIFNet demonstrates superior perfor-
mance compared to other methods by effectively preserving
infrared information (as seen in the first example) and re-
taining rich texture details from the input images (as shown
in the second example).

Near Infrared and Visible Image Fusion Task: Fig. 8
showcases additional results of various methods on the
NIR-VIS fusion task. Benefiting from the integration of
the digital photography image fusion task, GIFNet effec-
tively utilises the near-infrared modality, resulting in en-
hanced image quality with well-balanced illumination in
the background. By contrast, other advanced approaches
exhibit varying degrees of insufficient illumination issues,
leading to suboptimal fused images.

Medical Image Fusion Task: More comparative results
for the medical image fusion task are displayed in Fig. 9.
As highlighted in specific regions, GIFNet distinctly out-
performs other methods by better preserving enhanced edge
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Figure 7. More qualitative results of different methods on the infrared and visible image fusion task. Compared with other methods, our
GIFNet effectively preserves the infrared information and texture details from input images, achieving superior fusion quality in various
scenarios.
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Figure 8. More qualitative results of different methods on the near infrared and visible image fusion task. GIFNet excels in maintaining
appropriate illumination and clear background details, outperforming other methods prone to underexposure issues.

information from MRI images, retaining detailed textures of
the brain structure. This demonstrates GIFNet’s robustness
and capability in handling medical imaging requirements.

Remote Task: Additional results on the pansharpening
task are presented in Fig. 10. Similar to its performance in
previous tasks, GIFNet consistently delivers clearer texture
details from the Panchromatic modality (high spatial reso-
lution) while accurately preserving the colour information
from the Multispectral modality.

Multi-focus Image Fusion Task: Further results for the
MFIF task are depicted in Fig. 11. As indicated by the high-
lighted regions, GIFNet’s ability to achieve superior edge
intensity, as reported in Section 4.4, is well reflected in these
additional experiments. For instance, the method provides
a clearer depiction of letters and sharper edge details in the
background, illustrating its capacity for high-quality multi-
focus fusion.

Multi-exposure Image Fusion Task: Additional results
on the MEIF task are shown in Fig. 12. Compared to
other advanced fusion methods, the proposed approach gen-
erates fused images with robust and natural exposure set-
tings across diverse environments, including outdoor and
indoor scenes. In contrast, other approaches struggle to pro-
duce images with clear details and balanced exposure, fur-
ther highlighting GIFNet’s effectiveness in this challenging
task.
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Figure 9. More qualitative results of different methods on the medical image fusion task. GIFNet demonstrates distinct advantages by
better preserving enhanced brain structure details in the MRI images.
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Figure 10. More qualitative results of different methods on the Pansharpening task. GIFNet consistently achieves clearer spatial details
from the Panchromatic images and retains accurate colour information from the Multispectral images, ensuring high-quality fused results.
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Figure 11. More qualitative results of different methods on the multi-focus image fusion task. As highlighted, GIFNet excels at providing
sharper edges and clear visual details in the background regions, showcasing its superior edge intensity preservation.



GIFNetU2Fusion MUFusion IID-MEFSPD-MEFOverexposedUnderexposed

Figure 12. More qualitative results of different methods on the multi-exposure image fusion task. Our GIFNet produces fused images
with balanced exposure settings and natural details in diverse environments, outperforming other approaches that struggle to maintain a
consistent image quality.
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