
SACB-Net: Spatial-awareness Convolutions for Medical Image Registration

Supplementary Material

1. The Encoder Architecture

Figure 1 illustrates the architecture of the shared encoder

in SACB-Net. The multi-scale features extracted from each

convolutional block are used for pyramid flow estimation.
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Figure 1. Diagram of the shared encoder architecture, featuring

five convolutional blocks to extract multi-scale feature maps and

four average pooling layers for downsampling.

2. Normalized Cross-Correlation Loss

The normalized cross-correlation loss denotes as
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where If ppq and Im ˝ φppq denote the local mean inten-

sity values of the images. Here, pi represents the positions

within a local w3 window centered at p. During training,

we set the window size w to 9.

3. Evaluation on SSIM metric

Table 1 presents the results of Structural Similarity Index

Measure (SSIM) for the comparison methods. However, it

has been highlighted by [10] that a higher degree of image

similarity does not always indicate improved registration;

anatomical structures are more reliable measures.

4. Discussion on LPBA dataset

Figure 2 presents the boxplot of Dice scores for different or-

gans. It is clear that organ size significantly influences reg-

Table 1. SSIMÒ results.

Method IXI LPBA

Affine 0.680˘0.012 0.716˘0.027

VM-1 [1] 0.896˘0.012 0.940˘0.012

VM-2 [1] 0.900˘0.012 0.944˘0.012

NCA-Morph [9] 0.880˘0.016 0.922˘0.014

LKU [3] 0.860˘0.015 0.949˘0.012

B-Spline-Diff [8] 0.858˘0.015 0.887˘0.023

Fourier-Net [4] 0.841˘0.016 0.908˘0.017

LapIRN [7] 0.898˘0.013 0.940˘0.013

PRNet++ [5] 0.929˘0.011 0.959˘0.012

ModeT [11] 0.922˘0.012 0.960˘0.010

Im2Grid [6] 0.890˘0.015 0.953˘0.011

RDN [2] 0.906˘0.011 0.950˘0.011

Ours 0.915˘0.012 0.965˘0.011

istration performance, with the gallbladder being the small-

est and most challenging to register, while the liver is the

easiest.
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Figure 2. The boxplot of Dice scores for 13 labeled organs.

We selected the case with the lowest average Dice (ă0.5)

as a failure case and presented in Figure 3. As shown,

small organs are prone to mismatches, significantly impact-

ing registration accuracy.
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Figure 3. Illustration of a failure case registration with Dice

(ă0.5).

5. Additional Results

Figures 4, 5, and 6 present additional visualization results

for the LPBA, IXI and Abdomen CT datasets, respectively,

as shown on the following pages.
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Figure 4. Visual comparisons on LPBA dataset. Columns 2-5: warped moving images (top), displacement fields as RGB images (bottom).

.
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Figure 5. Visual comparisons on IXI dataset. Columns 2-5: warped moving images (top), displacement fields as RGB images (bottom).



PR++ OursModeTRDN

Im2GridLapIRNTransMorphFourier-Net

Moving Fixed

Figure 6. Visual comparisons on Abdomen CT dataset. Columns 3-6: warped moving images (top), warped moving segmentation masks

(middle) and displacement fields as RGB (bottom).
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