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1. Further Results Comparing with SoTA

1.1. Results with Protocol 3

Method FF++ DFDCP DFD CDF Avg.

LwF [22] 67.34 67.43 84.05 87.90 76.68

CoReD [19] 74.08 76.59 93.41 80.78 81.22

DFIL [30] 86.28 79.53 92.36 83.81 85.49

DMP [41] 91.61 84.86 91.81 91.67 89.99

Ours 90.89 89.33 93.97 94.34 92.13

Table 4. Performance comparisons (ACC) with Protocol 3. All

results of previous methods are copied from [41] and [30].

In Tab. 4, we copy the results after all tasks are incre-

mented with P3 from their official papers [30, 41] to further

compare the IFFD performance. Despite the notable dis-

tinction in experimental settings among these methods, our

method still exhibits superior performance.

1.2. Evaluation with Forgetting Rate

Following [25], we compute FR based on AUC between cur-

rent and first-learned models. Specifically, FR is calculated

as FR = 1− AUClast

AUCfirst
, where AUClast is the AUC of one

dataset tested on the currently-trained model, AUCfirst is

the AUC of the model that firstly-introduced the dataset. The

FR results in Tab. 5 indicate that our method has effectively

tackled the issue of forgetting.

2. Further Visualization Analysis

2.1. Visualization of Model Attention via Grad-
CAM

As shown in Fig 6, we deploy Grad-CAM [34] to generate

saliency maps. It can be observed that our method could ex-

plore more forgery clues since we successfully accumulated

forgery information. While DFIL struggles to find rich clues

and cannot consistently focus on the forgery regions.

Method SDv21 FF++ DFDCP Avg.

Lower Bound 47.19 32.75 16.40 32.11

LwF 38.45 14.20 0.41 17.69

CoReD 12.80 11.21 2.05 8.69

DFIL 6.72 20.69 11.80 13.07

HDP 9.43 14.68 3.25 9.12

Ours 0.28 10.06 0.94 3.09

Table 5. Evaluation of Forgetting Rate ↓ (%).

2.2. Visualization of Actual Feature Distribution
with Toy Models

To further investigate the learned feature distribution in IFFD,

we cleverly craft toy models to visualize the actual feature

distributions of baseline (DFIL [30]) and our method. To be

specific, we train new models with features that have only

two dimensions and all other settings are consistent with the

standard ones. Consequently, we could directly visualize

the two-dimensional features with a two-dimensional coor-

dinate system. As shown in Fig. 7, the Baseline performs

limited in distinguishing various forgeries and detecting bi-

nary Real/Fake, while our method could effectively isolate

each domain and uphold a clean binary decision boundary.

Notably, the two-dimensional features are insufficient to ad-

equately represent the learned representations, resulting in

the toy model performing poorly compared to the standard

model. Nevertheless, it could still suggest that the actual

feature distribution of the standard models is organized as

we anticipated, that is, aligned feature isolation.
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Figure 6. Saliency map visualization of DFIL [30] and the proposed

method.
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Figure 7. Actual two-dimensional feature distributions of toy

models with Protocol 1.

3. Experiments of Generalization Ability
3.1. Generalization to Other Unseen Datasets

To validate that the accumulated forgery information en-

ables our method to learn more about forgery generality, we



Method DFD [10] UniFace [42] SDv15 [32] FakeAVCeleb [17] Avg.

Lower Bond 0.6705 / 0.7038 0.6058 / 0.6216 0.5319 / - 0.5841 / 0.5995 0.5981 / 0.6416

DFIL [30] 0.7719 / 0.8293 0.5637 / 0.6001 0.7786 / - 0.6111 / 0.6306 0.6813 / 0.6867

HDP [39] 0.8039 / 0.8441 0.5971 / 0.6714 0.7211 / - 0.6535 / 0.6917 0.6939 / 0.7357

Ours 0.8225 / 0.8803 0.7269 / 0.7667 0.8110 / - 0.7663 / 0.8304 0.7817 / 0.8258

Table 6. Cross-dataset evaluations for generality with frame-level / video-level AUC. SDv15 has no video-level result since it is an image-level

dataset. All methods are trained based on Protocol 1 (SDv21, FF++, DFDCP, CDF) and tested on other unseen datasets. The best results are

highlighted in bold.

conduct cross-dataset experiments for generalization abil-

ity evaluation. As shown in Tab. 6, we apply the model

trained on Protocol 1 to be evaluated on DeepFakeDetection

(DFD) [10], UniFace [42] from DF40 [47], SDv15 from Dif-

fusionFace [3], and FakeAVCeleb [17]. The experimental

results substantially demonstrate that our method exhibits su-

perior generalization ability attributable to the accumulated

forgery information during incremental learning.

3.2. Generalization to Other Backbone

We additionally deployed our method on two mainstream

backbones (ResNet and Xception) and compared the results

with those of the original backbones under the same replay

size. As shown in Tab. 7, our method also significantly

improves the performance of these backbones.

4. Algorithm for Sparse Uniform Replay
As shown in Algorithm 1, we provide a concisely summa-

rized algorithm for better comprehension in the detailed im-

plementation of the proposed sparse uniform replay (SUR).

5. Sensitivity Evaluation

Protocol 1 Protocol 2

Figure 8. Sensitivity of replay size. The shown AUCs are the

average values on four datasets after training with Protocol 1 or 2.

5.1. Effect of Replay Size

In Fig. 8, we examine the effect of the replay set size on

model performance. It can be observed that the impact of re-

play set size on DFIL is relatively smooth, with performance

gradually improving as the set size increases. In contrast, our

Algorithm 1: Sparse Uniform Replay (SUR)

Input: t-th Dataset: Xt
all = {Xt

real,X
t
fake};

Feature Extractor Trained on t-th Dataset: Et;

Replay size: nr.

Initialize the t-th replay set Xt
replay as empty;

for Xt ∼ Xt
all do

extract features of Xt

Ft = E(Xt)
calculate feature centroid

ct = avg(Ft)
calculate magnitude matrix from Ft to ct

Mt = ‖Ft − ct‖2
calculate angularity matrix from Ft to ct

At = (Ft−ct)
‖Ft−ct‖2

rearrange Ft in ascending order based on Mt

divide Ft into nr

2 equal-length segments

Ft = {Ft
1: 2nnr

, . . . ,Ft
(n− 2n

nr
):n

}
for Ft

seg ∼ {Ft
1: 2nnr

, . . . ,Ft
(n− 2n

nr
):n

} do
calculate similarity of each feature f ti in Ft

seg

with its shuffled f̃ ti as stability score

sti =
f̃ ti ·(f ti )T

‖f̃ ti ‖2·‖f ti ‖2

store the xt
m corresponding to f tm with

largest stm into Xt
replay

calculate angularity similarity of each feature

f tj in Ft
seg with f tm based on At

store the xt
a corresponding to f ta with largest

angularity similarity into Xt
replay

Output: t-th replay set Xt
replay .

method exhibits limited performance when the replay set size

is small (i.e., 50, 150). This is because the constraints em-

ployed for the proposed aligned feature isolation rely heavily

on the replayed global distribution. Nonetheless, once the

replay set reaches a more standard size, the performance of

our approach becomes superior and promising.



Method SDv21 FF++ DFDCP CDF Avg.

Xception+Ours 0.996↑65.8% 0.767↑24.9% 0.852↑13.6% 0.951↑0.75% 0.892↑22.6%

ResNet+Ours 0.993↑85.8% 0.688↑16.0% 0.861↑20.0% 0.935↑0.73% 0.869↑25.4%

Table 7. Generalization to other backbones (AUC). ↑ denotes the improvement compared with vanilla backbones.
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Figure 9. Robustness evaluations. The images in the first column are visualized illustrations of different types of applied perturbations. The

models are trained based on Protocol 1.

5.2. Robustness against Unseen Perturbations

Considering the importance of robustness for real-world

applications, we evaluate the robustness of different IFFD

methods against unseen perturbations. Specifically, based on

Protocol 1, we assess robustness against Block-wise Dropout

(Dropout), Grid Shuffle (Shuffle), Gaussian Noise (Noise),

and Median Blur (Blur), each applied at multiple intensity

levels. As shown in Fig. 9, our method demonstrates con-

sistent superiority in Noise, Shuffle, and Dropout, and also

being comparable in Blur. The robustness superiority of our

method may be attributed to the effective accumulation and

utilization of forgery information achieved by our method,

which enables the extracted and organized latent space to be

more stable and representative.


