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In this supplementary material, we present addi-
tional qualitative and quantitative results of our proposed
WeakMCN. Section 1 includes ablation studies on (1) a
comparative analysis between our trainable WRES head
and a straightforward SAM-based pipeline, demonstrating
the advantages of our approach, (2) the sensitivity analysis
of the ISL threshold, (3) the impact of different visual fea-
tures in DVFE, and (4) the parameter efficiency comparison
with existing methods. Section 2 analyzes typical failure
cases to identify current limitations and future directions for
improvement.

1. Additional Ablation Studies

Comparison with Direct SAM Application. Our method
leverages SAM for generating pseudo masks to train the
segmentation head. An alternative strategy is to directly
employ SAM for mask generation at inference time. To
quantitatively evaluate these two approaches, we conducted
comparative experiments, with results presented in Table 1:
first training a REC model with DVFE for localization (first
row), then using its predicted boxes to prompt SAM for
mask generation at inference time (second row). While
this pipeline achieves competitive performance, achiev-
ing 67.36% REC and 53.97% RES on RefCOCO, we ob-
serve a notable performance gap compared to our proposed
WeakMCN (third row), particularly in RES performance.
For instance, on RefCOCO, WeakMCN outperforms this
alternative approach by 1.19% and 4.18% in REC and RES
metrics respectively. The performance gap highlights two
key advantages of our approach: (1) While both methods
utilize SAM, ours leverages it only for pseudo mask gener-
ation during training, allowing our lightweight WRES head
to learn task-specific features, whereas direct SAM appli-
cation is entirely dependent on the quality of the predicted
bounding boxes of WREC head at inference time. (2) Our
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Table 1. Comparison of replacing the WRES head with the
SAM head.

Model RefCOCO RefCOCO+
REC RES REC RES

WeakMCN (w/o WRES) 67.36 - 48.94 -

WeakMCN (w/o WRES) + SAMhead 67.36 53.97 48.94 37.97
WeakMCN 68.55 58.15 51.48 41.48

Table 2. Comparison of various hyperparameter thresholds
(α) in ISL.

α
RefCOCO RefCOCO+

REC RES REC RES

0.1 68.03 57.82 50.26 41.58
0.2 68.38 57.91 51.48 41.48
0.3 68.55 58.15 50.49 41.34
0.4 68.64 58.03 50.19 40.57

trainable WRES head enables dynamic feature interaction
with the WREC head during training, fostering mutual en-
hancement between WREC and WRES. These results vali-
date our design choice of using SAM as a teacher model for
training rather than as a direct inference tool.
The impact of the threshold in ISL. Tab. 2 presents the
impact of varying hyperparameter thresholds α in ISL. For
RefCOCO, the best performance is observed at α = 0.3,
achieving improvements of 0.61% and 0.19% in the WREC
and WRES tasks, respectively, compared to the worst-
performing configuration. Similarly, for RefCOCO+, the
optimal performance occurs at α = 0.2, with gains of
1.29% and 0.91% in the WREC and WRES tasks, respec-
tively. Overall, these results demonstrate that the proposed
WeakMCN model exhibits robustness to the choice of α,
showing minimal sensitivity to this hyperparameter. In this
paper, we adopt α = 0.3 for consistency across experi-
ments.
More visual features in visual bank. To investigate the
impact of incorporating additional visual features into our



Table 3. Ablation studies of DVFE in WeakMCN.

B RefCOCO RefCOCO+
Vdino Vsam Vclip REC RES REC RES

✓ 67.37 56.14 50.32 40.43
✓ ✓ 68.55 58.15 51.49 41.47
✓ ✓ ✓ 68.14 57.64 50.98 40.76

Table 4. The efficiency of DVFE in WeakMCN.

Features in DVFE Infrence Speed. RefCOCO RefCOCO+
Vdark Vdino Vsam REC RES REC RES

✓ 24.5fps 63.95 46.88 39.84 28.61
✓ ✓ 20.3fps 67.37 56.14 50.32 40.43
✓ ✓ ✓ 17.7fps 68.55 58.15 51.49 41.47

Table 5. Comparison of parameters with other weakly-
supervised RES or REC methods. Params denote the number
of trainable parameters.Train denote traning hours. Inf denote in-
ference speed.

Model Multi-task Params(M) Train(h) Inf(fps) RefCOCO RefCOCO+
REC RES REC RES

RefCLIP [1] ✗ 27.50 5 31.3 60.36 - 40.39 -
APL [4] ✗ 49.91 7.5 18.2 64.51 - 42.70 -
TRIS [3] ✗ 113.56 - - - 31.17 - 30.90
Shatter [2] ✗ 145.96 25.5 7.51 - 34.76 - 28.48
WeakMCN ✓ 34.31 7 17.7 68.55 58.15 51.48 41.48

model, we conduct detailed ablation studies on the Dy-
namic Visual Feature Encoder (DVFE) as shown in Table 3.
We systematically evaluate three visual features: DINO
features (Vdino), SAM features (Vsam), and CLIP features
(Vclip). Our experiments reveal that while the combination
of Vdino and Vsam achieves strong performance, further in-
corporating Vclip leads to slight performance degradation.
For example, on RefCOCO, we observe performance drops
of 0.41% and 0.51% for REC and RES tasks respectively
when adding Vclip to the Vdino+Vsam combination. We hy-
pothesize that this degradation stems from the redundant in-
formation and training noise introduced by excessive visual
features, which may contaminate the learned feature repre-
sentations. This finding emphasizes the crucial importance
of maintaining a balanced and efficient visual feature bank
rather than merely accumulating features.
The efficiency of DVFE. As shown in Table 4, we con-
duct ablation studies to analyze the efficiency-performance
trade-off of our proposed DVFE. The baseline model with
only DarkNet features (Vdark) achieves 24.5 FPS but shows
limited performance (63.95% REC, 46.88% RES on Ref-
COCO). By incorporating DINO features (Vdino), the in-
ference speed slightly decreases to 20.3 FPS, while bring-
ing substantial improvements in both REC (+3.42%) and
RES (+9.26%). The full DVFE implementation with all
three features (Vdark, Vdino, and Vsam) further boosts the
performance to 68.55% REC (+4.60% over baseline) and
58.15% RES (+11.27% over baseline) on RefCOCO, at

the cost of reducing inference speed to 17.7 FPS. Similar
performance gains are observed on RefCOCO+, where the
full DVFE achieves significant improvements in both REC
(+11.65%) and RES (+12.86%) compared to using Vdark

alone. These results demonstrate that while additional fea-
tures moderately impact computational efficiency, the per-
formance benefits of our DVFE are substantial and justify
the modest decrease in inference speed. The flexible archi-
tecture of DVFE enables different feature combinations to
meet various speed-accuracy requirements in real-world ap-
plications.

Efficiency Comparison with SOTA Methods. The ex-
perimental results in Table 5 demonstrate the comprehen-
sive advantages of our WeakMCN in terms of parameter
efficiency, training efficiency, and inference speed. From
the perspective of model size, with only 34.31M train-
able parameters, WeakMCN significantly reduces the num-
ber of learnable parameters by 31.3%, 76.5%, and 69.8%
compared to APL (49.91M), Shatter (145.96M), and TRIS
(113.56M), respectively. In terms of training efficiency,
WeakMCN requires only 7 hours for convergence, which is
considerably faster than Shatter (25.5h) and comparable to
APL (7.5h). For inference speed, WeakMCN achieves 17.7
FPS, showing better real-time capability than APL (18.2
FPS) and significantly outperforming Shatter (7.51 FPS).
Despite being more efficient, WeakMCN achieves state-
of-the-art performance on both tasks, surpassing RefCLIP
(60.36%) by 8.19% and APL (64.51%) by 4.04% in REC
accuracy (68.55%), while outperforming Shatter (34.76%)
by 23.39% and TRIS (31.17%) by 26.98% in RES perfor-
mance (58.15%). Particularly noteworthy is that WeakMCN
is the only model that simultaneously handles both REC and
RES tasks while maintaining competitive efficiency met-
rics. These results validate the effectiveness of our multi-
task learning framework in achieving a superior balance be-
tween computational efficiency and performance enhance-
ment.

2. Failure Cases

Fig. 1 illustrates typical failure cases that reveal the current
limitations of our approach. Specifically, cases 1-3 demon-
strate that WeakMCN tends to produce oversegmented pre-
dictions when multiple objects overlap within a single de-
tected bounding box, despite achieving accurate localiza-
tion. Furthermore, cases 4-6 showcase the model’s diffi-
culty in processing complex and lengthy expressions, par-
ticularly in terms of precise object localization. These fail-
ure cases indicate that there remains substantial room for
improvement in WeakMCN’s visual reasoning capabilities
and scene understanding, especially for handling intricate
spatial relationships and complex visual contexts.



GT WeakMCN

Exp-2: man holding kid

Exp-5: man in right front with blue tie 
next to older woman

Exp-1: back of chair second to left

GT WeakMCN

Exp-4: person in blue sweatshirt just 
right of the red umbrella

Exp-3: red couch center screen

GT WeakMCN

Exp-6: apple on the bottom to the right 
of the orange in middle

Figure 1. Failure cases. The green mask/bounding box is the ground truth, and the yellow one is our prediction.
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