
Accurate Differential Operators for Hybrid Neural Fields

Supplementary Material

A. Experimental details
In this section, we provide the implementation details for
our experiments described in Section 4.

A.1. Dataset
We perform pre-training on shapes from the FamousShape
dataset [4]. We filter out shapes with non-watertight meshes
or incorrectly oriented normals. This is because non-
watertight meshes do not admit a valid SDF and in order to
compute the correct ground truth, we require meshes with
correct normals. This gave us a set of 15 shapes. We further
center the meshes at the origin and normalize them to lie
inside the [−1, 1]3 cube.

A.2. Pre-training
The inputs for our experiments are the pre-trained hybrid
neural SDFs of the shapes. In this section, we present de-
tails about how we obtain the pre-trained models. First, we
provide a description and architectural details of our hybrid
neural fields:
• Instant NGP [11]: We retained the original architec-

ture from the paper. We implemented our models using
tiny-cuda-nn [10].

• Dense Grid: A grid-based neural field with dense feature
grids, as discussed in Müller et al. [11]. We use a multi-
resolution grid with 4 levels, starting from a minimum
resolution of 16 up to a maximum resolution of 256.

• Tri-Plane [2]: Instead of volumetric grids, they consist
of 3 planar grids (one each for XY, YZ, and XZ planes),
with a feature embedding residing on each grid point.
For a given query point, the features are combined us-
ing bi-linear interpolation on each plane and then further
summed together. Finally, the feature is passed through
an MLP to obtain the output. We used planes with a reso-
lution of 512, feature embeddings of size 32, and an MLP
with 2 hidden layers of size 128.

We follow the same data sampling procedure for training
neural SDFs as described by Müller et al. [11] for training
the Instant NGP. We trained all models for 104 steps using
the Adam [6] optimizer with an initial learning rate of 1e−3
and reduced the learning rate by a factor of 0.2 every 5 steps.

A.3. Post hoc operator
In this section, we provide details for the hyperparame-
ter selection procedure used for our post hoc polynomial-
fitting operator. We used a fixed value of 256 for k. For
the value of σ, we selected the best value using telescopic
search in two levels: the first sweep is conducted over

10i : −5 ≤ i ≤ 1, after which we zoom in to the interval
bounded by the best value, σ1 and its best neighbor σ2.
Assuming here for simplicity that σ1 < σ2, we then con-
duct a sweep over 20 values taken at uniform intervals from
[σ1, σ2].

Baselines. We compare our polynomial-fitting operator
with automatic differentiation and finite difference for com-
puting surface normals and mean curvatures of the shapes.
For automatic differentiation, we directly query the network
using PyTorch’s [12] automatic differentiation toolkit. For
the finite difference operators, we used a centered differ-
ence approach, sampling local axis-aligned neighbors of the
query point and using them to compute the operator. The fi-
nite difference operator had a hyperparameter h for the sten-
cil size. In essence, it gives the size of the finite difference
grid cell, if we were to set up a global grid for comput-
ing finite differences . We selected this hyperparameter by
sweeping over the set { 2

2i : 5 ≤ i ≤ 9}. Here 2i is analo-
gous to the resolution of the global finite difference grid.

A.4. Fine-tuning

As discussed in Section 3.3, we train an ensemble of mod-
els where each model is supervised with a different version
of the smoothed gradient operator, ∇̂x characterized by the
amount of smoothing it imposes. For fine-tuning based on
polynomial-fitting derivatives, we ensemble using σ values
taken uniformly from the interval [1e−3, 1e−2] at steps of
5e−3. For finite-difference-based fine-tuning we ensemble
using stencil sizes from the set {2i : 5 ≤ i ≤ 9}. We fine-
tune all models for 4000 steps with a constant learning rate
of 2e− 3, using the Adam optimizer [6].

Baselines. We have also compared our fine-tuning ap-
proaches with neural fields trained using eikonal regular-
ization [1, 5]. For the commonly-used eikonal loss that uses
autodiff gradients, we follow the same training parameters
as previously described in pre-training (Appendix A.2). We
just add the eikonal loss to the loss function with a weight
of 10−3 (selected by sweeping over {1, 10−1, 10−3}). For
the finite differences-based variant of the eikonal loss [7],
we found that the same weight gave the best result, and for
the size of the finite-difference stencil (ϵ in Li et al.) we
selected the value for each shape by sweeping over the set
{ 2
2i : 5 ≤ i ≤ 10}.

A.5. Evaluation

To compare our approach against the baselines, we gener-
ate ground truth surface normals and mean curvatures using

the meshes of the shapes. First, we compute the vertex nor-
mals and discrete mean curvatures [9] of the shapes from the
meshes. Next, we sample 218 points on the surface of the
meshes. We interpolate the vertex normals and mean curva-
tures to each point using barycentric interpolation from the
mesh vertices. This set of points, their computed normals,
and mean curvatures become the ground truth used in our
evaluations. The metrics used for our evaluations have been
described in Section 4 (under Metrics).

B. Additional Results

B.1. Accuracy analysis
In Section 4, we reported the results for the accuracy of our
operators. In this section, we provide the full results for
the accuracy analysis of our operators and our fine-tuning
approach on the FamousShape dataset [4]. Table 2 shows
comparisons between our post hoc operator and the base-
lines on Instant NGP while Table 3 shows how our best fine-
tuning approach, i.e., fine-tuning with polynomial-fitting
gradients. We show our results for Dense Grid models in
Tables 4 and 5. We can observe that we obtain more accu-
rate gradients than the baselines. This also shows that the
artifacts that we observed in the case of Instant NGP were
not solely a result of its hash encoding. Finally, results pre-
sented in Table 6 show that even on a significantly different
hybrid architecture like Tri-plane, our operators can provide
more accurate surface normals and mean curvatures. At the
time of writing, our Tri-plane implementation did not have
support for higher-order derivatives through autodiff deriva-
tives. Hence, we were unable to show fine-tuning results.

B.2. Results on images
We also show the benefits of our approaches on a different
modality, specifically images. We train an Instant NGP [11]
model on an image and evaluate its derivatives using our
proposed approaches. For pre-training our model, we used
a relative L2 loss and trained using the Adam optimizer with
a learning rate of 0.01. For fine-tuning, we use MSE loss for
Lcon, and weighted weighted Lgrad by 10−3, and trained
using a learning rate of 0.02.

Figure 1 shows our results. For reference, we use the
derivatives obtained using Sobel filtering, similar to Sitz-
mann et al. [13]. Firstly, we observe that our fine-tuning ap-
proach preserves the initial image, with a minor drop in the
PSNR over the pre-trained image. We also compare the ac-
curacy of derivatives using a weighted mean angular error,
where the weights are the reference gradient magnitudes.
This is because image gradients are usually more impor-
tant in regions with high gradient magnitudes (the edges).
Our post hoc operator gives more accurate gradients than
finite differences. We also observe that autodiff gradients
obtained after our fine-tuning approach are more accurate

than naively applying autodiff to the pre-trained signal.

B.3. Runtime Analysis
We compare the wall time of our local polynomial-fitting
approach with finite difference and autodiff operators. For
our operator, we use k = 256. We computed the mean and
standard deviation of wall-time required by all methods on a
single query point, averaged over 7 runs each running 1000
instances of the method.

Method Time (µs)

AD 1520± 12.9
FD 509± 91.1
Ours 459± 16.3

Table 1. Runtime Analysis

Table 1 summarizes the
results. We found that our
operator performs competi-
tively in terms of runtime
compared to finite difference
(FD) and autodiff (AD) gra-
dient operators. All these methods were benchmarked using
an Instant NGP model [11].

Our proposed fine-tuning approach takes ∼700s to reach
∼90% of the reported performance. Although vanilla In-
stant NGP can reach equivalent reconstruction loss in ∼20s,
its derivatives are nowhere near as accurate as our approach
even after ∼1000s worth of training. That said, if training
cost is a concern, we can trade off training cost for test-time
compute using our post hoc operator. Also, note that ours
is a naive implementation which can be sped up with en-
gineering tricks (e.g., sharing local neighborhoods or sam-
pling fewer points, trading off derivative accuracy).

B.4. Comparing PDE simulation with INSR [3]
While we have used the framework of INSR for our PDE
simulation experiments, a direct apples-to-apples compari-
son with INSR is not possible due to INSR utilizing a differ-
ent architecture (SIREN). As we discuss later (in Appendix
E), while SIREN also suffers from inaccurate derivatives,
the nature and cause of those accuracies differ significantly
from the high-frequency noise that we claim to address.
Tackling SIREN’s derivative errors would require an alto-
gether different approach that we hope to address in future
work.

However, to show how our approach with hybrid neural
fields stands relative to a current state-of-the-art approach
like INSR, we show a comparison between the errors of
our approach and INSR in the same setup as discussed in
Section 5.3. Figure 2 shows our results. We can see that
while INSR performs better, using our approach to compute
derivatives with hybrid neural fields allows hybrid neural
fields to perform competitively against INSR, which is not
possible with autodiff derivatives.

C. Comparison to Marching Cubes

As discussed in Section 3.2, one other alternative for com-
puting derivatives is by directly extracting the mesh using

Method Wt. Ang
Autodiff 28.07°

AD w/ fine-tuning 18.40°
Finite Differences 07.01°
Polynomial-fitting 04.64°

↓

Figure 1. Results on images. We show the application of our operators on a hybrid neural field trained to represent an image. For
reference, we use the image derivative obtained using Sobel filtering, similar to Sitzmann et al. [13]. We compare the image gradient
obtained using our post hoc and fine-tuning approaches with the baselines. For the zeroth-order signal, we show the PSNR (inset) which
shows that fine-tuning preserves the initial image. For the image gradient, we show the weighted mean angular error, weighted by the
reference gradient magnitude. Applying autodiff after our fine-tuning approach leads to more accurate gradients than direct autodiff. Using
our post hoc operator also leads to more accurate gradients than finite differences.

101

104

Grid Solver
INSR
AD
Ours

0 1 2 3 4 5
Time (sec.)

0.00

0.01

0.02M
SE

Figure 2. Comparison to INSR [3]. While INSR performs better,
our approach allows hybrid neural fields to perform competitively,
which is not possible when using autodiff gradients directly.

the Marching Cubes algorithm [8]. While mesh extrac-
tion with Marching Cubes can take time, this cost can be
amortized over multiple queries for derivatives using the
extracted mesh. Hence, for a fair runtime comparison to
Marching Cubes, we compare the runtime of our operator
with Marching Cubes on a larger point set of size 218 sam-
pled uniformly from a 3D shape, in this case, the Stanford
Bunny. Since the points sampled may not always lie on
the extracted mesh for Marching Cubes, we compute the
normals at the closest on-surface point. Figure 3 illustrates
how getting comparably accurate derivatives requires run-
ning Marching Cubes at a high grid resolution (512) which
takes up almost 15× the time taken by our approach. We
can try to save time by running marching cubes at a lower
resolution, however, this leads to inaccurate derivatives, re-
sulting in almost 7× the error incurred by our approach.
Thus, getting accurate derivatives from Marching Cubes is
quite expensive compared to our approach, and can become
increasingly prohibitive in applications like physical simu-

lation, where frequent derivative queries may be required
from an evolving underlying signal.

D. Application Setups
In this section, we describe the details of the experiential
setup used in each application described in Section 5.

Rendering. In our rendering experiments (Section 5.1)
for both shapes, we used the Instant NGP model [11].
The training and hyperparameter selection were done us-
ing the same process as described in Appendix A.2 and Ap-
pendix A.4 respectively. For our polynomial-fitting oper-
ator, we use σ = 0.03 and k = 256 for the sphere and
σ = 0.002 and k = 256 for the Armadillo, selected us-
ing telescopic search. For the results of the fine-tuning ap-
proach, we queried all models in the ensemble and selected
the best render after visual comparison. For the finite dif-
ference operator, we selected a stencil size of 2

32 for the
sphere and 2

512 by conducting a sweep as described in Ap-
pendix A.3.

Simulating Collisions. For our experiments on simulat-
ing collisions (Section 5.2), the hybrid neural SDF of the
sphere was a Dense Grid model. The model had a mini-
mum resolution of 16, a maximum resolution of 128, and
consisted of 4 grid levels. For our polynomial-fitting oper-
ator, we used σ = 0.03, k = 64, selected using telescopic
search.

PDE simulation. For the PDE simulation experiment
(Section 5.3), we used the same model architecture as the
collision experiments, with a minimum resolution of 16, a
maximum resolution of 128, and 4 grid levels. We modify
the code shared by the authors of INSR [3] to solve the 2D
advection problem. However, we retain the data sampling
and the training strategies used by the authors such as uni-
form sampling of the domain for training the implicit field,

Ours 643 grid 5123 grid
1.35°, 0.92 sec. 9.11°, 0.35 sec. 3.02°, 13.45 sec.

Figure 3. Marching Cubes for derivatives. Mean angle error and time required by Marching Cubes to compute surface normals (first-
order derivative) on the Bunny shape (Red denotes error). This approach can be expensive (15× time) for obtaining accurate surface
normals. Reducing the grid resolution can reduce time but trades off accuracy for efficiency (7× error). Comparatively, our approach
provides accurate normals efficiently.

and early stopping during optimization. Our initial condi-
tion is a Gaussian pulse, given by:

f(x, y) = e−
(

(x−µ1)2+(y−µ2)2

2σ2

)
(1)

where µ1 = −0.6, µ2 = −0.6, σ = 0.1. We run our
simulations in a square of side length 2 centered at (1, 1).
For the boundary conditions, we use the Dirichlet boundary
condition, i.e., the field becomes 0 at the boundary, the same
as INSR [3] in their 1D advection setting. Other details are
shared in Section Section 5.3.

E. Effectiveness on a non-hybrid neural field
(SIREN [13])

While our approaches are not tied to a particular architec-
ture, they can only address the high-frequency noise in neu-
ral fields. As we illustrated in Section 3, signals learned by
hybrid neural fields like Instant NGP [11] are abundant in
such high-frequency noise.

We also investigated if similar kinds of artifacts arise in
non-hybrid networks, specifically SIREN [13]. We trained
a SIREN network with ω0 = 30 and two hidden layers
of size 128 each. Our first observation was that even for
SIREN, derivatives, particularly higher-order derivatives,
suffer from inaccuracies. However, unlike hybrid neural
fields, we found that SIREN has a lower degree of high-
frequency noise. The errors in SIREN seem to stem from
low-frequency errors. Figure 4 illustrates this phenomenon.
We observed similar trends for different values of ω0 (ω0 ∈
{20, 50}) and with varying hidden sizes (over {64, 256})

Using our operators to compute the spatial derivatives
of SIREN only helps to a limited degree (Figure 5). The
observations on gradient are not very interesting as the au-
todiff gradient itself for SIREN is quite good and our oper-
ator leads to minor improvements. However, when comput-

ing the curvature (Laplacian), we observe that while autod-
iff curvatures are quite inaccurate, our operator can recover
some reasonable values from the field, but noticeable errors
remain. We believe that while our operator can address the
high-frequency noise component in the underlying field, it
is not able to overcome the low-frequency errors in SIREN.

To conclude, our preliminary experiments reveal that
neural fields learned by SIREN have a lower degree of high-
frequency noise and higher low-frequency errors compared
to hybrid neural fields. As a result, while our operators
can deal with high-frequency noise, low-frequency errors
still result in inaccurate derivatives. Dealing with these
low-frequency errors would require an altogether different
approach and would be an interesting direction for future
work.

F. Training hybrid neural fields with accurate
autodiff normals from scratch

As discussed in Section 3.3, we can also use our proposed
loss (Eq. (3)) for training hybrid neural fields from scratch.
For this, we first train the model, FΘ for s (> 0) steps as
a warm-start phase. This allows the model to learn a good
initial estimate of the zeroth-order signal. Next, we train
using our loss (Eq. (3)) for (n − s) steps. For computing
the smoothed gradient operator, we require M which is a
hybrid neural field with a good initial fit over the zeroth-
order signal. In this case, we set M as the frozen weights of
FΘ at the end of s training steps.

Intuitively, if M fits the zeroth-order signal well, the
smoothed gradient operator would be more accurate, lead-
ing to a more accurate supervision signal for Lgrad. We
want s to be large enough so that we have a reasonably
good fir with M . Selecting a very small s can lead to a
poor fit and unstable optimization in the next stage. On the

400 200 0 200 400
Hz

10 4

10 3

10 2

10 1

100

101
In

te
ns

ity

Ground truth
Hybrid neural SDF
SIREN

(a)

10 0 10
Hz

100

In
te

ns
ity

Ground truth
SIREN

(b)

10 0 10
Hz

100

In
te

ns
ity

Ground truth
Hybrid neural SDF

(c)
Figure 4. Fourier spectrum of SIREN Vs. hybrid neural SDF. Computed over a 1D slice (shown in Figure 5) of the SDF of a 2D circle.
Note the lower degree of high-frequency noise compared to the hybrid neural SDF. Further zooming in (Figures 4b and 4c) to visualize the
low-frequency components reveals the low-frequency errors in SIREN. Comparatively, the hybrid neural SDF more accurately captures
the lower frequencies.

(a) 0th order (b) 1st order (c) 2nd order

G
ro

un
d

tr
ut

h
SI

R
E

N

Figure 5. Differential operators of SIREN. SIREN trained on the SDF of a circle in 2D. While the first-order operator (spatial gradient)
for SIREN is quite accurate, the second-order operator (or the Laplacian) exhibits large errors. Applying our operators shows limited
effectiveness, addressing the high-frequency noise in the signal but struggling with the low-frequency errors.

other hand, choosing a very large s can lead to a time and
resource-intensive training run.

In this section, we analyze how the choice of s affects the
accuracy of autodiff normals. We train an Instant NGP [11]
model on the Armadillo shape. We fix a total training
budget of 500 steps. For each s ∈ {0, 50, 100, 200}, we
train another hybrid neural field using the regularization ap-
proach described above and compare the angle error of their
autodiff normals. Figure 6 shows our results. We also com-
pare against a hybrid neural field that is trained normally,
i.e., using only MSE loss for 500 steps. Let us consider
this as the pre-trained model (green dotted). We also fine-
tune the pre-trained model using our fine-tuning approach

described in Section 3.3 for 300 more training steps (blue
dashed). As expected, higher values of s lead to more ac-
curate autodiff normals. For s = 200 (i.e., 40% of the total
training budget), we observe that the accuracy of autodiff
normals is comparable to the fine-tuned model, which is
trained for a total of 800 steps (160% of the training budget).
For s = 0, i.e., applying Eq. (3) from the first step leads to
unstable optimization, causing the angle error to explode.
Interestingly, for as low as s = 50 (10% of training bud-
get) training steps, we observe that the accuracy of autodiff
normals improves compared to the pre-trained model.

This analysis shows that our proposed loss function (Eq.
(3)), can also be used to train hybrid neural fields from

Setting
of

training
steps ()

of warm-
start steps

()

Mean
angle error

(in)

Pre-training 500 - 07.23

Regularized
training 500

0 90.19

50 04.92

100 02.33

200 01.83

Fine-tuning 800 500* 01.81

n s ∘

*For fine-tuning, is actually the no. of pre-training stepss

Figure 6. Effect of s on angle error. We show the effects of the number of warm-start steps (s) on the accuracy of autodiff normals. We
can observe that a higher value of s leads to more accurate autodiff normals. We use the same Instant NGP architecture trained on the
Armadillo shape for all settings. All models except for the fine-tuned version are trained for a total of 500 steps. The fine-tuned model
(blue dashed) is trained for 300 more steps with our loss function after pre-training.

scratch such that they have more accurate spatial autodiff
gradients. This requires an initial warm-start phase where
we train the network to fit the zeroth-order signal followed
by training with our proposed loss function (Eq. (3)). A
higher number of warm-start steps leads to more accurate
autodiff normals.

G. Additional Results for Rendering

In this section, we provide some additional results for ren-
dering. Figure 7 shows our results on a large-scale scene
(top) and a complex shape (bottom). We observe that our
post hoc operator is relatively better at preserving sharp
details, such as the boundary between the lid and the box
(top), and the contours of the lips (bottom) while reducing
the noisy artifacts caused by autodiff surface normals. Our
fine-tuning approach also improves the accuracy of autodiff
surface normals.

References
[1] Matan Atzmon and Yaron Lipman. SAL: Sign agnostic

learning of shapes from raw data. In Proc. CVPR, 2020. 1
[2] Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki

Nagano, Boxiao Pan, Shalini De Mello, Orazio Gallo,
Leonidas Guibas, Jonathan Tremblay, Sameh Khamis, Tero
Karras, and Gordon Wetzstein. Efficient geometry-aware 3D
generative adversarial networks. In arXiv, 2021. 1

[3] Honglin Chen, Rundi Wu, Eitan Grinspun, Changxi Zheng,
and Peter Yichen Chen. Implicit neural spatial representa-
tions for time-dependent pdes. In International Conference
on Machine Learning, 2023. 2, 3, 4

[4] Philipp Erler, Paul Guerrero, Stefan Ohrhallinger, Niloy J.
Mitra, and Michael Wimmer. Points2Surf: Learning im-
plicit surfaces from point clouds. In Computer Vision –

ECCV 2020, pages 108–124. Springer International Publish-
ing, 2020. 1, 2, 7, 8, 9

[5] Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and
Yaron Lipman. Implicit geometric regularization for learning
shapes. In Proc. ICML, 2020. 1

[6] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. Proc. ICLR, 2014. 1

[7] Zhaoshuo Li, Thomas Müller, Alex Evans, Russell H Tay-
lor, Mathias Unberath, Ming-Yu Liu, and Chen-Hsuan Lin.
Neuralangelo: High-fidelity neural surface reconstruction. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2023. 1

[8] William E. Lorensen and Harvey E. Cline. Marching cubes:
A high resolution 3d surface construction algorithm. In
Proceedings of the 14th Annual Conference on Computer
Graphics and Interactive Techniques, page 163–169, New
York, NY, USA, 1987. Association for Computing Machin-
ery. 3

[9] Mark Meyer, Mathieu Desbrun, Peter Schröder, and Alan H.
Barr. Discrete differential-geometry operators for triangu-
lated 2-manifolds. In Visualization and Mathematics III,
Berlin, Heidelberg, 2003. Springer Berlin Heidelberg. 2

[10] Thomas Müller. tiny-cuda-nn, 2021. 1
[11] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-

der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. ACM Trans. Graph., 41(4):102:1–
102:15, 2022. 1, 2, 3, 4, 5

[12] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, et al. Pytorch: An imperative style, high-
performance deep learning library. In Proc. NeurIPS, 2019.
1

[13] Vincent Sitzmann, Julien N. P. Martel, Alexander W.
Bergman, David B. Lindell, and Gordon Wetzstein. Implicit
neural representations with periodic activation functions. In
Proc. NeurIPS, 2020. 2, 3, 4

Reference Autodiff Finite difference Polynomial-fitting AD after fine-tuning

Post hoc operators Ours

Figure 7. Additional results for rendering. A large-scale scene lit by a light source put in front of it (top) and specular Lucy (inset) lit by
an environment map (bottom).

Shape
Surface Normals Mean Curvature

L2 ↓ Ang ↓ AA@1 ↑ AA@2 ↑ σ h RRE ↓ σ h

AD FD Ours AD FD Ours AD FD Ours AD FD Ours FD Ours

Angel 0.12 0.04 0.03 7.14 2.30 1.50 1.93 26.47 52.09 7.50 61.66 81.56 1.5e-3 2/512 1.60 1.47 9.5e-1 2/256

Armadillo 0.13 0.03 0.02 7.27 1.83 1.18 1.79 24.69 52.52 6.88 63.93 86.84 2.0e-3 2/512 1.66 0.81 1.5e-1 2/512

Bunny 0.12 0.03 0.02 6.95 1.79 1.26 2.13 42.46 67.98 8.19 78.31 88.39 5.0e-3 2/256 1.37 0.72 2.5e-1 2/256

Column 0.72 0.28 0.15 46.15 16.27 8.47 0.31 0.51 4.54 1.20 2.08 15.87 3.5e-3 2/256 2.54 0.88 4.5e-1 2/128

Cup 0.12 0.02 0.01 7.06 1.24 0.88 2.02 62.26 72.20 7.93 84.37 88.66 8.0e-3 2/128 4.59 0.83 2.0e-2 2/64

Dragon 0.11 0.03 0.02 6.45 1.88 1.36 2.32 29.22 54.68 8.86 69.00 86.67 2.0e-3 2/512 1.46 0.89 9.0e-1 2/256

Flower 0.26 0.08 0.06 15.21 4.50 3.39 0.63 39.12 57.18 2.52 66.99 69.30 1.0e-2 2/128 13.40 0.87 2.0e-2 2/512

Galera 0.12 0.04 0.03 7.10 2.10 1.65 1.82 21.89 37.75 7.00 58.76 75.89 2.0e-3 2/512 1.85 0.82 2.5e-1 2/512

Hand 0.14 0.04 0.02 8.03 2.12 1.44 1.40 19.60 39.32 5.54 55.55 79.82 1.5e-3 2/512 1.27 0.86 3.5e-1 2/256

Netsuke 0.12 0.04 0.03 7.00 2.19 1.67 1.89 21.48 41.84 7.21 56.91 74.48 2.0e-3 2/512 2.40 0.82 3.5e-1 2/512

Serapis 0.11 0.03 0.03 6.59 1.88 1.53 2.24 36.02 49.25 8.60 68.78 76.18 4.0e-3 2/256 1.91 0.92 2.5e-2 2/128

Tortuga 0.11 0.03 0.02 6.07 1.51 1.08 2.51 46.14 63.30 9.70 80.90 89.30 3.0e-3 2/256 2.36 0.74 2.0e-1 2/512

Utah Teapot 0.14 0.04 0.03 8.33 2.53 2.00 1.51 27.91 42.20 5.91 62.64 73.89 4.5e-3 2/256 7.68 0.76 3.5e-2 2/512

XYZ Dragon 0.16 0.11 0.07 9.19 6.37 4.11 1.09 4.40 6.83 4.37 15.56 23.86 8.0e-4 2/512 2.00 0.92 1.5e-1 2/512

XYZ Statuette 0.61 0.25 0.18 37.50 14.53 10.55 0.12 0.72 2.11 0.46 2.94 7.86 1.5e-3 2/512 9.00 0.97 2.0e-3 2/512

Mean 0.21 0.07 0.05 12.40 4.20 2.80 1.58 26.86 42.92 6.12 55.22 67.90 - - 3.67 0.89 - -

Table 2. Post hoc operator evluation for Instant NGP. We compare our operators on the FamousShape dataset [4]. σ, h indicate
the selected hyperparameters for our approach and finite difference (FD) respectively. Note that our approach provides more accurate
derivatives than the baselines.

Shape Before fine-tuning After fine-tuning σ

L2 ↓ Ang ↓ AA@1 ↑ AA@2 ↑ CD ↓ F-Score ↑ L2 ↓ Ang ↓ AA@1 ↑ AA@2 ↑ CD ↓ F-Score ↑

Angel 0.12 7.13 1.92 7.54 5.32e-4 93.47 0.04 2.06 31.74 67.25 5.38e-4 93.45 1.5e-3
Armadillo 0.13 7.23 1.80 6.95 1.63e-4 96.15 0.03 1.72 31.04 69.70 1.65e-4 96.14 2.0e-3
Bunny 0.12 6.98 2.08 8.11 7.26e-4 93.26 0.02 1.37 60.74 86.52 7.09e-4 93.35 5.5e-3
Column 0.73 46.25 0.31 1.24 2.93e-3 85.89 0.14 8.35 4.66 16.16 2.95e-3 85.71 3.5e-3
Cup 0.12 7.05 2.06 7.91 3.24e-4 94.47 0.02 1.15 60.76 84.76 3.27e-4 89.11 1.0e-2
Dragon 0.11 6.46 2.31 8.81 1.99e-3 89.97 0.03 1.90 33.25 70.87 1.98e-3 89.96 2.0e-3
Flower 0.26 15.20 0.67 2.52 3.40e-4 96.48 0.06 3.32 55.34 70.17 3.47e-4 91.49 1.0e-2
Galera 0.12 7.10 1.82 6.93 8.37e-4 92.29 0.03 1.97 28.11 65.63 8.35e-4 92.31 2.0e-3
Hand 0.14 8.02 1.39 5.53 2.64e-3 88.08 0.04 2.10 21.30 57.41 2.67e-3 88.10 1.5e-3
Netsuke 0.12 7.01 1.90 7.29 1.86e-4 96.13 0.04 2.11 26.40 61.64 1.87e-4 96.11 2.0e-3
Serapis 0.11 6.57 2.21 8.55 1.18e-3 91.79 0.03 1.65 44.96 73.21 1.18e-3 91.73 4.0e-3
Tortuga 0.11 6.04 2.53 9.75 3.29e-4 96.04 0.02 1.18 61.18 87.00 3.28e-4 96.07 3.5e-3
Utah Teapot 0.14 8.29 1.50 5.92 6.23e-4 94.30 0.04 2.06 38.10 70.07 6.31e-4 94.13 4.0e-3
XYZ Dragon 0.16 9.18 1.13 4.40 9.72e-4 90.40 0.10 5.81 4.62 16.47 9.72e-4 90.37 1.5e-3
XYZ Statuette 0.61 37.46 0.13 0.46 9.69e-5 97.29 0.19 11.11 1.77 6.76 9.97e-5 96.17 1.5e-3

Mean 0.21 12.38 1.58 6.12 9.24e-4 93.07 0.05 3.20 33.59 60.24 9.28e-4 92.28 -

Table 3. Fine-tuning using polynomial-fitting for Instant NGP. Full results for fine-tuning using polynomial-fitting over the Fa-
mousShape dataset [4]. σ denotes the hyperparameter value with the best results from the ensemble.

Shape
Surface Normals Mean Curvature

L2 ↓ Ang ↓ AA@1 ↑ AA@2 ↑ σ h RRE ↓ σ h

AD FD Ours AD FD Ours AD FD Ours AD FD Ours FD Ours

Angel 0.09 0.05 0.04 5.20 2.71 2.39 13.56 33.30 43.95 33.37 58.60 66.99 2.0e-3 2/512 3.41 0.87 4.5e-1 2/256

Armadillo 0.08 0.04 0.03 4.87 2.09 1.75 7.84 24.00 32.72 23.34 58.00 68.52 2.0e-3 2/512 1.75 1.49 9.0e-1 2/256

Bunny 0.07 0.03 0.02 3.78 1.73 1.26 13.10 47.91 67.93 37.00 79.02 88.29 5.0e-3 2/256 1.25 0.81 1.5e-1 2/256

Column 0.27 0.21 0.14 16.07 11.98 8.33 1.96 4.09 11.48 6.96 12.64 24.65 3.5e-3 2/512 4.62 0.83 2.0e-2 2/64

Cup 0.06 0.02 0.01 3.45 1.20 0.86 21.27 64.09 72.44 45.64 84.11 88.60 8.0e-3 2/128 1.24 0.72 2.5e-1 2/256

Dragon 0.08 0.04 0.03 4.56 2.25 1.76 10.73 26.83 44.20 30.92 60.64 76.86 2.5e-3 2/512 1.52 0.89 9.0e-1 2/256

Flower 0.14 0.07 0.06 8.13 4.26 3.36 14.50 57.72 57.60 37.26 70.87 69.32 1.0e-2 2/128 3.28 0.87 2.0e-2 2/32

Galera 0.08 0.04 0.04 4.62 2.40 2.07 10.22 23.97 32.01 29.11 55.73 65.33 2.0e-3 2/512 1.70 0.82 2.5e-1 2/512

Hand 0.09 0.04 0.04 4.93 2.55 2.03 8.24 19.34 26.81 25.71 50.25 62.64 2.0e-3 2/512 1.90 0.86 3.5e-1 2/64

Netsuke 0.08 0.04 0.03 4.56 2.26 1.99 10.12 26.22 33.08 28.77 57.91 65.06 2.0e-3 2/512 1.45 0.82 3.5e-1 2/256

Serapis 0.07 0.03 0.03 4.01 1.89 1.54 17.73 39.21 48.89 36.91 67.65 75.46 4.0e-3 2/256 1.98 0.93 2.5e-2 2/128

Tortuga 0.05 0.03 0.02 2.94 1.47 1.13 17.44 50.36 62.65 45.51 80.91 87.94 3.0e-3 2/256 1.60 0.74 2.0e-1 2/512

Utah Teapot 0.06 0.04 0.03 3.51 2.28 1.98 22.17 36.37 42.62 47.55 67.44 73.79 4.5e-3 2/256 0.96 0.76 3.5e-2 2/32

XYZ Dragon 0.16 0.13 0.12 9.39 7.37 6.89 2.16 3.58 4.00 8.15 12.72 14.01 1.5e-3 2/512 2.13 0.92 1.5e-1 2/256

XYZ Statuette 0.31 0.23 0.21 18.26 13.13 12.27 1.36 2.91 3.88 4.82 9.41 12.28 1.5e-3 2/512 10.54 0.97 2.5e-3 2/512

Mean 0.11 0.07 0.06 6.55 3.97 3.31 11.49 30.66 38.95 29.40 55.06 62.65 - - 2.62 0.89 - -

Table 4. Post hoc operator evluation on Dense Grid. Comparison on the FamousShape dataset [4]. σ, h indicate the selected hyper-
parameters for our approach and finite difference (FD) respectively. Note that our approach provides more accurate surface normals and
mean curvature than the baselines.

Shape Before fine-tuning After fine-tuning σ

L2 ↓ Ang ↓ AA@1 ↑ AA@2 ↑ CD ↓ F-Score ↑ L2 ↓ Ang ↓ AA@1 ↑ AA@2 ↑ CD ↓ F-Score ↑

Angel 0.09 5.20 13.64 33.45 5.33e-4 92.87 0.06 3.62 30.12 53.67 5.35e-4 92.50 2.0e-3
Armadillo 0.08 4.87 7.72 23.40 1.65e-4 95.28 0.06 3.27 14.84 39.06 1.69e-4 95.02 2.0e-3
Bunny 0.07 3.78 13.11 37.07 7.25e-4 91.00 0.03 1.59 52.63 81.11 7.15e-4 90.67 5.0e-3
Column 0.27 16.15 1.87 6.90 2.95e-3 84.82 0.17 9.79 4.43 13.75 2.92e-3 73.45 3.5e-3
Cup 0.06 3.48 21.14 45.34 3.24e-4 84.89 0.02 1.11 63.64 84.39 3.20e-4 78.32 8.0e-3
Dragon 0.08 4.54 10.74 30.85 1.99e-3 86.31 0.05 2.72 26.48 57.89 1.99e-3 85.95 2.5e-3
Flower 0.14 8.14 14.34 37.25 3.40e-4 91.50 0.06 3.40 54.03 68.48 3.46e-4 83.98 1.0e-2
Galera 0.08 4.62 10.08 28.87 8.41e-4 85.93 0.05 2.93 23.18 51.34 8.36e-4 85.87 2.0e-3
Hand 0.09 4.95 8.16 25.72 2.64e-3 87.68 0.06 3.28 13.77 39.75 2.65e-3 87.59 2.0e-3
Netsuke 0.08 4.55 10.21 29.01 1.86e-4 92.93 0.05 2.93 20.56 47.99 1.84e-4 92.82 2.0e-3
Serapis 0.07 4.01 17.48 36.62 1.18e-3 85.15 0.03 1.97 41.59 66.92 1.17e-3 84.85 4.0e-3
Tortuga 0.05 2.94 17.30 45.35 3.29e-4 93.16 0.03 1.47 51.17 80.15 3.30e-4 93.04 3.0e-3
Utah Teapot 0.06 3.52 22.07 47.55 6.22e-4 90.70 0.04 2.19 39.15 71.07 6.24e-4 89.93 4.5e-3
XYZ Dragon 0.16 9.38 2.17 8.11 9.72e-4 89.68 0.15 8.66 2.82 10.23 9.77e-4 89.28 1.5e-3
XYZ Statuette 0.31 18.23 1.34 4.89 9.70e-5 95.58 0.26 15.33 2.20 7.55 1.03e-4 91.53 1.5e-3

Mean 0.11 6.56 11.42 29.35 9.26e-4 89.83 0.08 4.40 29.32 51.40 9.25e-4 87.66 -

Table 5. Fine-tuning using polynomial-fitting on Dense Grid. Full results for fine-tuning using polynomial-fitting over the FamousShape
dataset [4]. σ denotes the hyperparameter value that obtained the best results.

Shape
Surface Normals Mean Curvature

L2 ↓ Ang ↓ AA@1 ↑ AA@2 ↑ σ h RRE ↓ σ h

AD FD Ours AD FD Ours AD FD Ours AD FD Ours FD Ours

Angel 0.08 0.04 0.03 4.86 2.30 1.92 5.91 27.50 30.46 20.85 62.71 69.31 1.5e-3 2/512 2.99 1.63 9.0e-1 2/512

Armadillo 0.09 0.03 0.03 5.35 2.00 1.48 4.04 21.41 35.38 15.00 58.19 77.42 2.0e-3 2/512 1.23 0.81 2.0e-1 2/256

Bunny 0.10 0.03 0.02 5.74 1.98 1.31 3.95 33.16 65.12 14.66 71.98 87.97 5.0e-3 2/256 1.43 0.72 2.5e-1 2/256

Column 0.38 0.24 0.14 22.87 14.18 8.31 0.70 2.06 8.21 2.68 7.60 23.31 3.0e-3 2/512 6.07 0.95 3.0e-2 2/512

Cup 0.09 0.02 0.02 5.20 1.31 0.90 4.86 57.47 71.78 17.38 83.76 88.42 8.0e-3 2/128 6.32 0.82 9.0e-4 2/32

Dragon 0.09 0.04 0.03 5.24 2.32 1.77 4.56 19.24 36.44 16.54 53.50 75.71 2.5e-3 2/512 1.58 0.93 9.0e-1 2/256

Flower 0.18 0.08 0.06 10.65 4.47 3.40 3.08 44.50 56.91 11.46 69.30 69.07 1.0e-2 2/128 2.68 0.87 2.0e-2 2/64

Galera 0.10 0.04 0.03 6.01 2.51 1.97 3.25 15.84 24.95 12.33 46.93 63.97 2.0e-3 2/512 1.37 0.82 2.5e-1 2/256

Hand 0.08 0.04 0.03 4.46 2.03 1.59 6.42 22.34 33.03 22.43 59.48 74.47 1.5e-3 2/512 1.88 0.85 3.5e-1 2/64

Netsuke 0.10 0.04 0.04 5.92 2.52 2.05 3.47 16.26 25.08 12.94 47.23 62.22 2.0e-3 2/512 1.55 0.82 3.5e-1 2/256

Serapis 0.11 0.04 0.03 6.24 2.17 1.65 3.47 25.35 45.18 12.82 60.02 74.30 4.0e-3 2/256 6.32 0.93 2.5e-2 2/512

Tortuga 0.09 0.03 0.02 5.32 1.76 1.23 4.36 34.08 57.78 15.83 72.24 87.04 3.5e-3 2/256 2.86 0.74 2.0e-1 2/512

Utah Teapot 0.11 0.05 0.04 6.16 2.62 2.04 5.02 28.41 40.87 17.91 61.90 73.30 4.5e-3 2/256 7.03 0.75 3.5e-2 2/512

XYZ Dragon 0.22 0.13 0.12 12.80 7.52 6.96 0.72 2.40 2.43 2.87 9.12 9.22 1.5e-3 2/512 2.78 0.92 1.5e-1 2/512

XYZ Statuette 0.37 0.23 0.21 22.04 13.16 11.91 0.31 1.29 1.35 1.27 5.13 5.29 1.5e-3 2/512 15.64 0.97 2.5e-3 2/512

Mean 0.15 0.07 0.06 8.59 4.19 3.23 3.61 23.42 35.67 13.13 51.27 62.74 - - 4.12 0.90 - -

Table 6. Post hoc operator evluation on Tri-planes. Comparison on the FamousShape dataset [4]. σ, h indicate the selected hyperparam-
eters for our approach and finite difference (FD) respectively.

	Experimental details
	Dataset
	Pre-training
	Post hoc operator
	Fine-tuning
	Evaluation

	Additional Results
	Accuracy analysis
	Results on images
	Runtime Analysis
	Comparing PDE simulation with INSR chenwu2023insr-pde

	Comparison to Marching Cubes
	Application Setups
	Effectiveness on a non-hybrid neural field (SIREN sitzmann2020siren)
	Training hybrid neural fields with accurate autodiff normals from scratch
	Additional Results for Rendering

