ABC-Former: Auxiliary Bimodal Cross-domain Transformer with Interactive
Channel Attention for White Balance

Supplementary Material

1. Overview

This supplementary material provides additional resources
to complement the main manuscript, including the follow-
ing:

A visualization of the network architecture used to extend
the proposed ABC-Former for handling images captured
under multiple light sources.

* Quantitative and qualitative evaluations conducted on the
Mixed-illuminant dataset [3].

* Additional qualitative results from various datasets, in-
cluding the MIT-Adobe 5K dataset [6], the Rendered WB
dataset (Setl-Test and Set2) [2], and the Rendered Cube+
dataset [2, 4].

2. Extension to the Multi-illuminant Task

Handling color casts caused by multiple light sources within
a single scene presents a significant challenge for single-
illuminant white balance (WB) methods. To address it,
recent studies [3, 8] have proposed generating blending
weighting maps instead of estimating a single illuminant for
the entire scene. These maps correspond to the various WB
settings required to adapt to scenes illuminated by multiple
light sources.

Our proposed model, initially designed for single-
illuminant WB tasks, can be easily extended to the multi-
illuminant WB task by leveraging the original ABC-Former
as its backbone. This extended version, termed ABC-
FormerM, differs from the standard ABC-Former only
regarding its inputs and outputs. Specifically, ABC-
FormerM takes multi-illuminant images as input and gen-
erates weighting maps corresponding to each input image.
Figure | depicts the architecture of ABC-FormerM, us-
ing an example with three WB settings: “tungsten,” “day-
light,” and “shade.” The input images are first concate-
nated and passed through a 1 x 1 convolutional layer to
reduce their channels to three for processing by the sRG-
Bformer. Similarly, the sSRGB and CIELab histograms
of the input images are concatenated and convolved with
a 1 x 1 kernel to prepare them for PDFformers, respec-
tively. Unlike ABC-Former, which directly outputs a WB-
corrected image, ABC-FormerM generates weighting maps
for each multi-illuminant image. These maps are subse-
quently refined using edge-aware smoothing via a fast bi-
lateral solver [5]. The final WB-corrected image is ob-
tained by applying multi-scale weighted averaging to the
multi-illuminant images, following the generation method

described in [3, 8].
2.1. Loss Function

To optimize ABC-FormerM, we employ the original loss
functions from Section 3.3: Loss Function of the main
manuscript to supervise the auxiliary models (L£55” and

ngﬁ%b). Additionally, we incorporate the reconstruction loss

(Lrec) and smoothing loss (Lgmoom)s as following the ap-
proaches used in Mixed-WB [3] and Style WB [8], defined
respectively as:
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where Pg; refers to the ground truth patch, and P; rep-
resents the input patch rendered with the ¢;;, WB setting.
The corresponding weighting map for P; is denoted as Wi,
where ¢ € {t,d,s} ori € {t,f,d,c,s}. These initials
represent the WB settings: fungsten, fluorescent, daylight,
cloudy, and shade, respectively. The smoothing 108s Lgmooth
is computed by the weighting map convolved with 3 x 3
horizontal and vertical Sobel filters, V, and V. The total
loss function is defined as Lo = ﬁ;f;GB + ﬁlfd‘}b 4 Lrec +
AL gmooth» With X set to 100.

2.2. Evaluation on the Multi-illuminant Conditions

We conducted experiments to evaluate the performance of
ABC-FormerM on the mixed-illumination task. The exper-
iments were performed using two different patch sizes (64
x 64 and 128 x 128) and two sets of predefined WB set-
tings: (i) {¢t,d, s}, and (ii) {t, f, d, ¢, s}. These settings cor-
respond to the following color temperatures: tungsten (2850
K), fluorescent (3800 K), daylight (5500 K), cloudy (6500
K), and shade (7500 K). All other experimental configu-
rations, including the learning rate and optimizer, matched
those used in the original ABC-Former.

We evaluated the model on the Mixed-illuminant
dataset [3], which contains 150 synthetic images with mul-
tiple light sources created from 3D scenes modeled in Au-
todesk 3Ds Max. ABC-FormerM was compared against
state-of-the-art WB methods, including single-illuminant
WB methods [1, 2, 9], as well as multi-illuminant WB
methods [3, 8]. Table | reports the WB performance us-
ing three objective metrics: Mean Square Error (MSE),
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Figure 1. The extended ABC-Former, ABC-FormerM, addresses the multi-illuminant task. It processes multi-illuminant input images
(e.g., Tungsten, Shade, and Daylight) and their corresponding histograms from the SRGB and CIELAB color spaces by concatenating
them separately. These concatenated inputs are fed into the Auxiliary Models (PDFformers) and the Target Model (sSRGBformer). ABC-
FormerM outputs weighting maps (Wr, Wg, and Wp) to blend the multi-illuminant images after post-processing, producing the final

WB-corrected result.

Mean Angular Error (MAE), and AE 2000 [7]. Despite
being a straightforward extension of our single-illuminant
model, ABC-FormerM demonstrates competitive perfor-
mance, particularly excelling in MSE and AE 2000. Fig-
ure 2 provides qualitative comparisons, showing that ABC-
FormerM consistently achieves superior color correction in
challenging multi-illuminant scenarios compared to exist-
ing methods.

3. More Experimental Results

3.1. Results on Multi-illuminant MIT-Adobe 5K
Dataset

Multi-illuminant Methods. The MIT-Adobe 5K
dataset [6] contains 5,000 raw images captured by
professional and semi-professional photographers, cover-
ing diverse scenes, subjects, and color temperatures. We
compare our ABC-FormerM with other multi-illuminant
methods, including the standard Camera Auto White Bal-



Table 1. The WB results on the Mixed-illuminant dataset [3] are presented, using the mean, first quartile (Q1), second quartile (Q2), and
third quartile (Q3) of the MSE, MAE, and AE 2000. The patch size is indicated by “p.” To highlight the best results, colored values are
used: Red for the best, Blue for the second-best, and Green for the third-best.

Method MSE | MAE | AE 2000 | Size
Mean Q1 Q2 Q3 Mean Ql Q2 Q3 |Mean Ql Q2 Q3 |MB

KNN [2] 1226.57 680.65 1062.64 1573.89| 5.81° 4.28° 5.76° 6.85° [12.00 9.37 11.56 13.61|21.8
Deep-WB [1] 1130.60 621.00 886.32 1274.72]4.53° 3.55° 4.19° 5.21°|10.93 8.59 9.82 11.96|16.7
WBFlow [9] 1105.38 672.03 962.54 1321.69|5.43° 3.86° 5.18° 6.31° [11.01 8.91 10.47 13.26|30.2
ABC-Former 941.06 463.42 734.55 1166.88(4.95° 3.91° 4.68° 5.71°|10.71 8.53 10.22 12.04|20.2

Mixed-WB [3]
p=64, WB =td,s 819.47 655.88 84579 1000.82|5.43° 4.27° 4.89° 6.23° |10.61 9.42 10.72 11.81|5.09
p=64, WB =tfdc,s | 938.02 75729 961.55 1161.52|4.67° 3.71° 4.14° 5.35°|12.26 10.80 11.25 12.76|5.10
p=128, WB=td,s | 830.20 584.77 853.01 992.56 |5.03° 3.93° 4.78° 5.90° |[11.41 9.76 11.39 12.53|5.09
p=128, WB =tf,d,c,s|1089.69 846.21 1125.59 1279.39|5.64° 4.15° 5.09° 6.50° | 13.75 11.45 12.58 15.59|5.10
Style WB [8]
p=64, WB =td,s 868.01 649.36 889.00 1026.98|5.73° 4.48° 5.42° 6.34° [12.11 10.42 12.12 13.36|61.0
p=64, WB =tfdc,s [1051.07 760.86 1024.00 1332.50| 6.30° 4.43° 6.01° 7.69° |14.43 11.90 13.11 16.15|61.1
p=128, WB=td,s | 822.77 576.52 840.67 1025.26|5.11° 3.93° 4.85° 5.51°|11.65 10.63 11.86 13.02|61.2
p=128, WB =t,f,d,c,s| 834.28 62595 8442.71 1005.59|5.71° 4.57° 5.54° 6.19° [11.79 9.84 12.19 13.00|61.3
ABC-FormerM
p=64, WB =td,s 771.09 528.17 831.16 996.09 | 5.58° 4.22° 5.66° 6.82° |10.20 8.74 10.60 11.67 |20.2
p=64, WB =tfdcs | 756.57 514.13 794.29 930.43 | 5.21° 3.79° 5.04° 6.32° |10.21 8.83 1042 11.78|20.2
p=128, WB=td,s | 773.80 528.12 830.45 1008.02|5.87° 4.53° 5.82° 6.93° [10.06 8.61 10.12 11.61|20.2
p=128, WB =t,f,d,c,s| 750.72 526.05 791.05 951.49 |5.48° 4.08° 5.72° 6.69° | 9.85 8.52 10.11 11.26|20.2
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Figure 2. Qualitative comparisons with other WB methods on the Mixed-illuminant dataset [3], with the AE 2000 displayed at the bottom
of each corrected image.

ance (AWB), Mixed-WB [3], and Style WB [8], as shown or {t, f,d, c, s}) in Adobe Photoshop.
in Figures 4-7. To simulate multi-illuminant inputs, raw Single-illuminant Methods.

images were processed with various WB settings ({t,d, s} We also compare our ABC-Former (single-illuminant



version) with Camera AWB and other single-illuminant
methods, including KNN [2], Deep-WB [1], and
WBFlow [9], in Figures 8-11. The results demonstrate
that our method effectively corrects color casts and achieves
natural-looking WB, even in multi-illuminant scenarios.

3.2. Additional Results on Single-illuminant
Datasets

To further evaluate WB correction, we present qualitative
comparisons of Deep-WB [1], WBFlow [9], and our ABC-
Former on images from the Rendered WB dataset Set1-Test
and Set2 [2] and the Rendered Cube+ dataset [2, 4]. Re-
sults are shown in Figures 12-15 (Rendered WB dataset
Setl-Test), Figures 16-19 (Rendered WB dataset Set2), and
Figures 20-23 (Rendered Cube+ dataset). The compar-
isons highlight that ABC-Former consistently restores nat-
ural colors, proving its effectiveness in diverse color correc-
tion tasks.

3.3. Analysis of WB Performance vs. Model Size

Figure 3 compares the mean AE 2000 scores and model
sizes of various WB models [1-3, 9, 10] on the Rendered
Cube+ dataset [2, 4]. We use the AE 2000 metric [7] for
its alignment with human visual perception and sensitivity
to subtle color changes. The figure shows that ABC-Former
outperforms competing models while maintaining a com-
pact size, demonstrating its efficiency and effectiveness.

Rendered Cube+ dataset
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Figure 3. The model size vs. AE 2000 performance of WB models
on the Rendered Cube+ dataset [2, 4].
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Figure 4. Qualitative comparisons with multi-input WB methods on the MIT-Adobe 5K dataset [6].
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Figure 5. Qualitative comparisons with multi-input WB methods on the MIT-Adobe 5K dataset [6].
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Figure 6. Qualitative comparisons with multi-input WB methods on the MIT-Adobe 5K dataset [6].
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Figure 7. Qualitative comparisons with multi-input WB methods on the MIT-Adobe 5K dataset [6].
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Figure 8. Qualitative comparisons with single-input WB methods on the MIT-Adobe 5K dataset [6].
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Figure 9. Qualitative comparisons with single-input WB methods on the MIT-Adobe 5K dataset [6].
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Figure 10. Qualitative comparisons with single-input WB methods on the MIT-Adobe 5K dataset [6].
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Figure 11. Qualitative comparisons with single-input WB methods on the MIT-Adobe 5K dataset [6].
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Figure 12. Qualitative comparisons of WB methods on the Rendered WB dataset Set1-Test [2], with AE 2000 shown in the bottom-right
corner of each image.
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Figure 13. Qualitative comparisons of WB methods on the Rendered WB dataset Setl-Test [2], with AE 2000 shown in the bottom-right
corner of each image.
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Figure 14. Qualitative comparisons of WB methods on the Rendered WB dataset Set1-Test [2], with AE 2000 shown in the bottom-right
corner of each image.
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Figure 15. Qualitative comparisons of WB methods on the Rendered WB dataset Set1-Test [2], with AE 2000 shown in the bottom-right
corner of each image.
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Figure 16. Qualitative comparisons of WB methods on the Rendered WB dataset Set2 [2], with AE 2000 shown in the bottom-right corner
of each image.
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Figure 17. Qualitative comparisons of WB methods on the Rendered WB dataset Set2 [2], with AE 2000 shown in the bottom-right corner
of each image.



Figure 18. Qualitative comparisons of WB methods on the Rendered WB dataset Set2 [2], with AE 2000 shown in the bottom-right corner
of each image.
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Figure 19. Qualitative comparisons of WB methods on the Rendered WB dataset Set2 [2], with AE 2000 shown in the bottom-right corner
of each image.
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Figure 20. Qualitative comparisons of WB methods on the Rendered Cube+ dataset [2, 4], with AE 2000 shown in the bottom-right corner
of each image.
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Figure 21. Qualitative comparisons of WB methods on the Rendered Cube+ dataset [2, 4], with AE 2000 shown in the bottom-right corner
of each image.
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Figure 22. Qualitative comparisons of WB methods on the Rendered Cube+ dataset [2, 4], with AE 2000 shown in the bottom-right corner
of each image.



Figure 23. Qualitative comparisons with WB methods on the Rendered Cube+ dataset [2, 4], with the AE 2000 indicated in the bottom-
right corner of each image.
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