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In this supplementary material, we provide the mathematical proofs for Theorems 4.2 and 4.3 from the main paper in Sec. 1,
details of the KFAC and Shampoo algorithms in Sec. 2, additional results in Sec. 3, and the reproducibility details in Sec. 4.

1. Theoretical Analysis

1.1. Proofs of main theorems

In this section, we present the proof of theorems 4.2 and 4.3 from the main paper.

1.1.1. Notation and preliminaries

We fix a feedforward network of L layers and widths {n0, n1, . . . , nL} f : Rn0 → RnL defined by

f : x→ TL ◦ ψ ◦ TL−1 ◦ · · · ◦ ψ ◦ T1(x) (1)

where Ti : xi → θixi + bi is an affine transformation with trainable weights θi ∈ Rni×nii , bi ∈ Rni , and ψ is a non-linear
activation acting component wise. The number n0 is the input dimension and the number nL is the output dimension. The
composition ψ ◦ Tk ◦ · · · ◦ ψ ◦ T1 gives the first k-layers of the neural network function.

In this paper, we are primarily concerned with three main activations. Namely, Gaussian, sine and wavelet. A Gaussian is

defined by e−
−σ2x2

2 where 1
σ2 is called the variance of the Gaussian and a sine function by sin(ωx) where ω > 0 is the

frequency of the sine function. Finally, we will use the Gabor wavelet as in [9] which is denoted by ψ(x;ω0; s0), which is a
complex valued function, with real part given by cos(ω0x)e

−s20x
2

and imaginary part by sin(ω0x)e
−s20x

2

. All the signals we
consider in this paper are real-valued. Therefore, we will be using the real part of the Gabor wavelet. As this will be the only
wavelet we consider in this work we will simply call it a wavelet and drop the name Gabor.

For the following discussions we will assume our network only has weight parameters and no bias as this will make the
mathematics more clear for the reader. However, we note that the proof of the main theorems go through for the case the
network has biases with simple modifications.

We fix a data set, which we denote by (X,Y ) ∈ Rn0×N × RnL×N , consisting of input data X ∈ Rn0×N and targets
Y ∈ RnL×N . X will have feature dimension n0 and the number of training samples will be given by N . Thus we can think
of (X,Y ) as a collection of training samples {(xi, yi}Ni=1, with each pair (xi, yi) a training point.

An implicit neural representation can thus be viewed as a map

f : Rn0×N × Rp → RnL×N (2)

where p denotes the parameter dimension. In general, parameter vectors θ ∈ Rp will be denoted in coordinates by as
θ = (θ(1), . . . , θ(L)), where each θ(i) ∈ Rni×ni−1 corresponds to the parameters of the ith-layer. Each such parameter θ(i)

*equal contribution
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represents a matrix of trainable weights given by:

θ(i) =

 θ(i)11 · · · θ(i)1ni−1

...
...

...
θ(i)ni1 · · · θ(i)nini−1

.


Thus with the notation above parameters are represented as matrices. However, when we take derivatives with respect to
parameter variables, we will to flatten the parameter matrices. We will do so by flattening each row to a column, thereby
obtaining a column vector. Thus the above θ(i) will be flattened to the vector

V ec(θ(i)) = (θ(i)11, . . . , θ(i)1ni−1
, . . . , θ(i)ni1, . . . , θ(i)nini−1

)T . (3)

We will always assume such flattening of matrices has been done and therefore we will not explicitly use the vec notation. At
times we will have to go back and forth between the actual parameter matrix and its associated flattened vector. The context
should make it clear as to which representation we are dealing with.

Feedforward neural networks are composed of their layers. We express this by writing

f = fL ◦ · · · ◦ f1 (4)

where for each 1 ≤ k ≤ L

fk : Rnk−1×N × Rnk×nk−1 × · · · × RnL×nL−1 → Rnk×N × Rnk+1×nk × · · · × RnL×nL−1 (5)

is the map defined by
fk(Z, θ(k), . . . , θ(L)) = (ψ(θ(k) · Z), θ(k + 1), . . . , θ(L))T . (6)

The quantity θ(k) · Z is the matrix in Rnk×N given by applying θ(k) viewed as a nk × nk−1 matrix acting on a nk−1 ×N
matrix Z. Furthermore, the latter entries (θ(k + 1), . . . , θ(L)) are all viewed as flattened vectors. This is an example of how
we have had to use parameters both in their matrix form and their flattened vector form.

Using (6), the map f1 is a map

f1 : Rn0×N × Rn1×n0 × · · · × RnL×nL−1 → Rn1×N × Rn2×n1 × · · · × RnL×nL−1 (7)

where Rn0 is the input space, the space in which our input data resides. As we will not be taking any derivatives with respect
to data, and our data set has already been fixed, we will make life easier by viewing

f1 : Rn1×n0 × · · · × RnL×nL−1 → Rn1×N × Rn2×n1 × · · · × RnL×nL−1 (8)

defined by
f1(θ(1), . . . , θ(L)) = (ψ(θ(1) ·X), θ(2), . . . , θ(L))T (9)

where X is our fixed input data in Rn0×N .

One final notation we introduce is the following. Given a matrix A ∈ Rm×n, viewed as a m × n matrix, we let Aj denote
the jth-row of A and Aj denote the jth column of A. With this notation, we observe the following: Given a parameter vector
θ(k) ∈ Rnk×nk−1 , viewed as a nk × nk−1 matrix, and a Z ∈ Rnk−1×N , the product θ(k) · Z is flattened to the vector

(θ1(k) · Z1, . . . , θ
1(k) · ZN , . . . , θ

nk · Z1, . . . , θ
nk · ZN )T

where each θj(k) is a row vector with nk−1 entries and each Zj is a column vector with nk−1 entries.

For this section, we will fix our loss function as the MSE loss function. We write this loss function as

L(θ) = 1

N

N∑
i=1

1

2
|f(xi, θ)− yi|2. (10)

Observe that the MSE loss can be written as the composition c ◦ f , where c is a convex cost function given by the average
squared error:

c : RnL×N → R (11)
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defined by

c(z1, . . . , zN ) =
1

N

N∑
i=1

1

2
|zi − yi|2 (12)

where we remind the reader that our data set consists of point {(xi, yi}Ni=1, with each xi ∈ Rn0 and yi ∈ RnL . With this
notation we can easily see that the MSE loss is given by the composition c ◦ f . Theorems 4.2 and 4.3 also hold for more
general loss functions such as Binary Cross Entropy (BCE) loss.

We now compute the differential of the MSE loss function, from which a simple transpose gives the gradient. Observe that
the loss function is a map

L : Rp → R (13)

and therefore its differential is a map
DL : Rp → Lin(Rp,R) ∼= Rp×1 (14)

where Lin(Rp,R) denotes the linear maps from Rp to R, which is linearly isomorphic to the space of 1× p matrices which
we can identify as Rp×1.

The chain rule gives DL(θ) = Dc(f(θ)) · Df(θ). Therefore, in order to compute the differential of the loss, it suffices to
compute the differential of the cost function c and the differential of the neural network function f . The following proposition
is an easy consequence of equation (12).

Proposition 1.1. Dc(Z) = 1
N (Z − Y ), where Y denotes the matrix of targets from our data set.

The next step is to compute the differential of the neural network function f . The differential will be a map

Df : Rp → Lin(Rp,RnLN ) ∼= Rp×nLN . (15)

By equation (4), and the chain rule, we have that for a vector θ ∈ Rp

Df(θ) = DfL(fL−1 ◦ · · · ◦ f1(θ)) ·DfL−1(fL−2 ◦ · · · ◦ f1(θ)) · · ·Df2(f1(θ)) ·Df1(θ). (16)

We therefore need to compute the differential of each fk.

We use the following notation to denote partial derivatives with respect to the space variable Z and the parameter variable
θ(j), for k ≤ j ≤ L. The partial derivative ∂

∂Z will denote derivatives with respect to the variable Z, and ∂
∂θi(j) will denote

derivatives with respect to the ith row of the parameter variable θ(j) for k ≤ j ≤ L. Thus for example, we have that

∂

∂Z
ψ(θj(k) · Z) =

(
∂

∂Z
ψ(θj(k) · Z1), . . . ,

∂

∂Z
ψ(θj(k) · ZN )

)T

. (17)

The following lemma shows how variable derivatives of variable indices interact which each other.

Lemma 1.2. ∂
∂Zj

ψ(θi(k)Zi) = 0 for all j ̸= i and ∂
∂θj(k)ψ(θ

i(k)Zi) = 0 for all for all j ̸= i.

Proof. The result follows immediately from noting that the term ψ(θi(k)Zi) does not depend on the variable Zj and θj(k)
for j ̸= i.

Proposition 1.3. The differential Dfk is a (Nnk + nk+1nk · · ·+ nLnL−1)× (nk−1N + nknk−1 + · · ·+ nLnL−1) matrix
given by the following representation

∂
∂Zψ(θ

1(k) · Z) ∂
∂θ1(k)ψ(θ

1(k) · Z) 0 · · · · · · 0 0 · · · · · · 0
...

...
...

...
...

...
. . .

. . .
∂
∂Zψ(θ

nk(k) · Z) 0 0 · · · · · · ∂
∂θnk (k)ψ(θ

nk(k) · Z) 0 · · · · · · 0

0 0 0 0 0 0 Ink+1nk
· · · 0

...
...

...
...

...
...

...
. . .

...
0 0 0 0 0 0 0 · · · InLnL−1


where Ii denotes an i× i identity matrix.
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Proof. The matrix representation follows from a straight forward calculation of partial derivatives which we explain. First of
all we remind the reader that the image of fk is to be thought of as a flattened column vector, where remember that we flatten
each row to a column. By definition

fk(Z, θ(k), . . . , θ(L)) = (ψ(θ(k) · Z), θ(k + 1), . . . , θ(L))T .

We now observe that the terms θ(k + 1), . . . , θ(L) will give zero when we apply ∂
∂Z and ∂

∂θi(k) for 1 ≤ i ≤ nk. This
leads to the zeros in the bottom left of the big matrix. The term ψ(θ(k) · Z) will give zero when we apply the derivatives

∂
∂θ(k+1) , . . . ,

∂
∂θ(L) . This leads to the zeros in the top left of the big matrix.

The matrix representation of Dfk now follows from the derivatives ∂
∂Zψ(θ

i(k) · Z) and ∂
∂θ(k)ψ(θ

i(k) · Z), noting that by
lemma 1.2 we have that ∂

∂jθ(k)ψ(θ
i(k) · Z) = 0 for i ̸= j.

The Hessian of the loss function L can be computed by applying the fact that L = c ◦ f and the chain rule. We will use the
notation D2L to denote the Hessian of the loss, which is to be thought of as the second differential of L.

Proposition 1.4. Given a point θ ∈ Rp we have that

D2L(θ) = Df(θ)T · ( 1
N
I) ·Df(θ) + 1

N
(f(θ)− Y ) ·D2f (18)

where 1
N I denotes the identity matrix with 1/N on its diagonal and recall that Y is a matrix consisting of the targets from

the fixed data set.

Proof. This follows by applying the chain and product rule to DL. Given a point θ, we have that

DL(θ) = Dc(f(θ)) ·Df(θ) (19)

Differentiating once more, and applying the chain and product rules, we get

D2L(θ) = Df(θ)T ·D2c(f(θ)) ·Df(θ) +Dc(f(θ)) ·D2f(θ). (20)

By proposition 1.1, we have that Dc(f(θ)) = 1
N (f(θ)− Y ) and then differentiating once more we get D2c(f(θ) = 1

N I and
the result follows.

Proposition 1.4 implies that in order to compute the Hessian of the loss, we need to compute the Hessian of the neural network
function. This can be done by the chain rule and induction.

Lemma 1.5. We have the following decomposition for the Hessian of f

D2f = (Df1)
T · · · (DfL−1)

TD2fL(DfL−1) · · · (Df1)
+ (Df1)

T · · · (DfL−2)
TDfLD

2fL−1(DfL−2) · · · (Df1)
+ (Df1)

T · · · (DfL−3)
TDfLDfL−1D

2fL−2(DfL−3) · · · (Df1)
+ · · ·+ (Df1)

TDfLDfL−1 · · ·Df3D2f2D
2f2(Df1)

+DfLDfL−1 · · ·Df2D2f1

Proof. The proof of this follows by induction on the layers.

Lemma 1.5 implies that in order to compute the Hessian of the neural network, we need to compute the Hessian and the
differential of each layer. The differential of each of the layers was already computed in proposition 1.3. We will now give a
matrix formula for the Hessian of each layer fk.

In order to compute the Hessian D2fk, we will flatten Dfk so that it is a map

Dfk : Rnk−1×N×Rnk×nk−1×· · ·×RnL×nL−1 → R(nk×N+nk+1×nk+···+nL×nL−1)(nk−1×N+nk×nk−1+···+nL×nL−1). (21)
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Then for a point (Z, θ(k), . . . , θ(L)), we have that D2fk(Z, θ(k), . . . , θ(L)) will be a ((nk ×N + nk+1 × nk + · · ·+ nL ×
nL−1)(nk−1×N + nk × nk−1 + · · ·+ nL× nL−1))× (nk−1×N + nk × nk−1 + · · ·+ nL× nL−1) matrix. In fact, it can
be thought of as a collection of (nk ×N + nk+1 × nk + · · ·+ nL × nL−1) square (nk−1 ×N + nk × nk−1 + · · ·+ nL ×
nL−1)× (nk−1 ×N + nk × nk−1 + · · ·+ nL × nL−1) matrices stacked on top of each other.

Each such square matrix arises from the rows of the matrix representation ofDfk, see proposition 1.3. We start by computing
these square matrices.

Lemma 1.6. Given the matrix representation of Dfk in proposition 1.3 and 1 ≤ i ≤ nkN , we have that the derivative of the
ith-row of Dfk is given by

∂2

∂Z∂Zψ(θ
i(k) · Z) 0 · · · 0 ∂2

∂θi(k)∂Zψ(θ
i(k) · Z) 0 · · · 0

0 0 · · · 0 0 0 · · · 0
...

...
...

...
...

...
...

...
0 0 · · · 0 0 0 · · · 0

∂2

∂∂Zθi(k)ψ(θ
i(k) · Z) 0 · · · 0 ∂2

∂θi(k)∂θi(k)ψ(θ
i(k) · Z) 0 · · · 0

0 0 0 0 0 0 · · · 0
...

...
...

...
...

...
...

...
0 0 0 0 0 0 · · · 0


Furthermore if nkN < i ≤ nk+1×nk + · · ·+nL×nL−1 then the derivative of the ith-row of Dfk will be a matrix of zeros.

Proof. The proof follows by inspecting each row of the matrix representation of Dfk given in proposition 1.3. We observe
that if 1 ≤ i ≤ nkN , then the ith row of Dfk is given by[

∂
∂Zψ(θ

i(k) · Z) 0 0 · · · · · · 0 ∂
∂θi(k)ψ(θ

i(k) · Z) 0 · · · · · · 0
]

We then observe that the derivatives ∂
∂θj(k) of any element in the above row will be zero for j ̸= i as none of the elements in

the row depend on the variable θj(k) when j ̸= i. This means the only derivatives that could possibly be non-zero for such a
row will come from ∂

∂Z and ∂
∂θi(k) . This proves the first part of the proposition. To prove the second part, we simply observe

that the ith-rows of Dfk for nkN < i ≤ nk+1 × nk + · · · + nL × nL−1 have only one non-zero entry which will be a 1.
When differentiated with respect to any of the variables this will give zero, and thus we simply get the zero matrix for such a
row. This proves the second part of the proposition.

Using lemma 1.6, we can compute a full matrix representation of the Hessian of fk.

Proposition 1.7. A matrix representation of the Hessian of fk is given by

∂2

∂Z∂Zψ(θ
1(k) · Z) ∂2

∂θ1(k)∂Zψ(θ
1(k) · Z) 0 · · · 0 0 0 · · · 0

∂2

∂Z∂θ1(k)ψ(θ
1(k) · Z) ∂2

∂θ1(k)∂θ1(k)ψ(θ
1(k) · Z) 0 · · · 0 0 0 · · · 0

...
...

...
...

...
...

... · · ·
...

∂2

∂Z∂θnk (k)ψ(θ
nk(k) · Z) 0 0 · · · 0 ∂2

∂θnk (k)∂θnk (k)ψ(θ
nk(k) · Z) 0 · · · 0

0 0 0 · · · 0 0 0 · · · 0
...

...
...

...
...

...
... · · ·

...
0 0 0 · · · 0 0 0 · · · 0

∂2

∂Z∂θnk (k)ψ(θ
nk(k) · Z) 0 0 · · · 0 ∂2

∂θnk (k)∂θnk (k)ψ(θ
nk(k) · Z) 0 · · · 0

0 0 0 · · · 0 0 0 · · · 0
...

...
...

...
...

...
... · · ·

...
...

...
...

...
...

...
... · · ·

...
0 0 0 · · · 0 0 0 · · · 0
...
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Proof. The proof follows by taking each square matrix from lemma 1.6 and stacking them on top of each other.

Proposition 1.3 shows that the gradient of the kth-layer neural function has some sparsity in the matrix representation.
Furthermore, proposition 1.7 shows that the Hessian of the kth-layer neural function fk has some sparsity, regardless of the
activation. We will not consider such structures as sparse as they are shared by all implicit neural representations. Rather, we
will show in the next section, that much more sparsity can be obtained in the Hessian of the loss when the neural network
uses a ReLU activation, by showing that the derivative terms in 1.7 vanish.

1.1.2. Proofs of theorems 4.2 and 4.3 from the main paper

From propositions 1.4, 1.3, 1.7 and lemma 1.5 we see that in order to compute the Hessian of the MSE loss L, we need to
understand the first and second derivatives of our activation function.

Proposition 1.8.

1. Let ϕ(x) = sin(ωx). Then ϕ′(x) = ωcos(ωx) and ϕ′′(x) = −ω2sin(ωx).

2. Let ϕ(x) = e−
σ2x2

2 . Then ϕ′(x) = −σ2xe−
σ2x2

2 and ϕ′′(x) = −σ2e−
σ2x2

2 + σ4x2e−
σ2x2

2 .

The proof of the above proposition is straightforward from standard differentiation rules along with the chain rule.

In the paper [9], a Gabor wavelet is used as an activation function for implicit neural representations. We remind the reader
from our discussion in Sec. 1.1.1 that the wavelet we use in this work is the Gabor wavelet ψ(x;ω0; s0), which is a complex
valued function, and its real part is given by cos(ω0x)e

−s20x
2

and its imaginary part by sin(ω0x)e
−s20x

2

. Applying the chain
rule and proposition 1.8 we get similar derivative formulae for the real and imaginary part of the Gabor wavelet. Therefore,
for the following we will focus on sine, Gaussian and ReLU activations with the knowledge that the proofs for the sine and
Gaussian case go through for the Gabor wavelet case by restricting to the real and imaginary parts of the wavelet. Since all
our signals are real-valued the Gabor wavelet we use is the real part of the Gabor wavelet.

We will use some basic concepts from measure theory such as sets of measure zero. The reader who is not familiar with such
material may consult the book [11].

Proposition 1.9. Let ϕ(x) denote a sine, Gaussian or Gabor wavelet function. On any finite interval I in R, the set of zeros
of ϕ, ϕ′ and ϕ′′ have Lebesgue measure zero. In particular, normalizing the Lebesgue measure to have measure 1 on I , so
that we obtain a probability measure, we have that the zeros of ϕ, ϕ′ and ϕ′′ have probability zero.

Proof. The proof of this follows by first observing that on any finite interval ϕ only has finitely many zeros. Using proposition
1.8, we see that ϕ′ and ϕ′′ also have only finite zeros on a finite interval. The result follows.

Proposition 1.10.1. d
dxReLU(x) = H(x), where H is the step function centered at 0.

2. Viewing d
dxReLU(x) as a distribution, we have that d2

dx2ReLU = δ, where δ denotes a Dirac delta distribution centered
at 0.

Proof. By definition ReLU(x) = max(0, x), therefore for x < 0 is is clear that d
dxReLU(x) = 0. For x ≥ 0, we

have that ReLU(x) = x and therefore d
dxReLU(x) = 1 for such points. It follows that one can represent the derivative

d
dxReLU(x) = H(x) distributionally, with a discontinuity at the origin.

We move on to proving the second identity. Given a function f ∈ C∞
c (R) the distribution H is defined by

⟨H, f⟩ =
∫ ∞

∞
H(x)f(x)dx =

∫ ∞

0

f(x)dx.

The derivative of H is then given by (see [8] for preliminaries on derivatives of distributions)

⟨H ′, f⟩ = −⟨H, f ′⟩ = −
∫ ∞

0

f ′(x)dx = f(0) = ⟨δ, f⟩

where the second equality comes from the fundamental theorem of calculus and the fact that f is compactly supported. The
final equality follows by definition of the Dirac delta distribution. It thus follows that d2

dx2ReLU = δ as distributions.
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Proposition 1.11. Let ϕ denote a ReLU activation. If I is an interval of finite non-zero Lebesgue measure that contains
a sub-interval of negative numbers of non-negative measure. Then the zero set of ϕ and ϕ′ has non-zero measure. If I is
any interval of finite non-zero Lebesgue measure then the zero set of ϕ′′ has non-zero Lebesgue measure. By normalizing
the Lebesgue measure of I to be 1, we get that the probability of the zero set of ϕ and ϕ′ is non-zero when I contains a
sub-interval of negative numbers of non-zero probability. Furthermore, the probability of the zero set of ϕ′′ is non-zero.

Proof. The proof of this follows from proposition 1.10.

Proof of theorem 4.2 from main paper. By propositions 1.8, 1.9 we get that the derivative terms in the formula 1.7, will be
non-zero with probability 1. Then from propositions 1.4, 1.3, we have that the Hessian will in be a dense matrix. Therefore,
given any non-zero vector v, we have that the Hessian vector product Hv will be a dense vector.

Proof of theorem 4.3 from main paper. By propositions 1.10 and 1.11 we get that the the derivative terms in the formula
1.7, will be zero with high probability. Then from propositions 1.4, 1.3 we have that the Hessian will in be a sparse matrix.
Therefore, given any non-zero vector v, we have that the Hessian vector product Hv will be a sparse vector.

2. Algorithms

In section 4.1 of the main paper, we spoke about Kronecker factored preconditioners and mentioned that there were other
algorithms that used other types of preconditioning techniques such as Gauss-Newton, L-BFGS and Shampoo. In this section
we discuss the K-FAC algorithm that makes use of a Kronecker factored preconditioner and the Shampoo algorithm that
makes use of left and right preoconditioning matrices.

2.1. A summary of K-FAC

Kronecker Factored Approximate Curvature (K-FAC) is a second order preconditoning algorithm introduced in [5]. The
algorithm seeks to approximate the Hessian of an objective function via the Fisher information matrix [5]. In general, the
Fisher information matrix is dense matrix, thus for implementation purposes this would require a huge memory cost for large
parameter objective functions. Therefore, the authors impose that the approximation should factor into Kronecker products,
where matrix forming the Kronecker product comes from the layer of the neural network.

For this section we fix an objective function f that we want to minimize. Let G = JTJ denote the Gauss-Newton matrix of
f , where J = ∇fT is the Jacobian of f . When implementing K-FAC one must resort to the empirical Fisher information
matrix, which is defined as as the expected value of G

F = E(G) ≈ E(H). (22)

SinceG is a first order approximation of the hessianH of f , we see that the empirical Fisher information matrix approximates
the expected value of the Hessian.

Given a neural network Φ with l layers. F will be a block diagonal matrix with l× l blocks. Each block F̃ij of F is given by

E(∇θif ⊗∇θjf) (23)

where i and j are layers in the network and θi the parameters in layer i.

The idea of the algorithm is to now impose a Kronecker product structure on each such block and form the approximation

E(∇θif ⊗∇θjf) ≈ E(ϕ̃i−1(ϕ̃j−1)T )⊗ E(δi(δj)T ) (24)

where ϕ̃i is the activation values in layer i with an appended 1 in the last position of the vector i.e. (ϕ̃i)T = [(ϕi)T 1]. This
is done as we are treating the weights and biases of the network together. The terms δi arise from standard backpropagation
formulas.

We thus see that the empirical Fisher information matrix can be approximated by Kronecker products E(ϕ̃i−1(ϕ̃j−1)T ) ⊗
E(δi(δj)T ). Abusing notation and denoting this approximation by F as well, the K-FAC algorithm update is

θk+1 = θk − ηF−1∇θtf. (25)
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We thus see that K-FAC is a preconditioned gradient descent algorithm with preconditioner given by a Kronercker factored
approximation to the empirical Fisher information matrix. For more details on the K-FAC algorithm we refer the reader to
[5].

2.2. A summary of Shampoo

Shampoo is a preconditioning algorithm that optimizes objective functions over tensor spaces, introduced in [3]. In general,
the algorithm works to optimize parameters that can represented as general tensors. In this regard, the optimizer is extremely
effective when working on general neural architectures such as convnets. Implicit neural representations (INRs) are repre-
sented by feed forward neural networks, and hence their parameters are represented by a 2-tensor i.e. a matrix. Therefore,
we will be analyzing Shampoo in the setting that our parameters are represented as matrices. However, we point out to the
reader that the algorithm does work on more general tensors, see [3] for details.

As explained in section 3.1, a preconditioner is in general a matrix that acts on the gradient before an update is performed.
This action is done by matrix multiplication on the left of the gradient. Let us denote the preconditioner by L, then the action
if given by

L · g (26)

We can also act on the gradient on the right. Given a matrix R, we could also do

g ·R. (27)

Combining (26) and (27) we obtain the left and right preconditioning transformation

L · g ·A. (28)

If we fix an objective function f : Rm×n → R, e.g. the MSE loss of a neural network. The shampoo algorithm for f (in the
case of 2-tensors) takes as Lt the Gauss-Newton matrix JTJ , an m×m-matrix, and as Rt the matrix JJT , an n×n-matrix.
The pseudocode for Shampoo (in the case of 2-tensors) is given in algorithm 1.

Algorithm 1 Shampoo

Require: initial point x0, iterations N , learning rate η, ϵ > 0.
L0 ← ϵIm
R0 ← ϵIn
for t = 0, · · · , N do

gt ← ∇xtf
Lt ← Lt−1 + JT

t Jt
Rt ← Rt−1 + JtJ

T
t

xt+1 ← xt − ηL−1/4
t gtR

−1/4
t

end for

For the experiments carried out in this paper (including supplementary material) we will make use of the Shampoo algorithm
for 2-tensors, as INRs are feedforward networks. For details on Shampoo for general tensors we refer the reader to the paper
[3].
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3. Experiments

In Section 5 of the main paper, we focused our analysis on Gaussian neural fields. In this section we extend our analysis to
other activations such as sine, wavelet and ReLU. We also present results on additional datasets.

3.1. Additional results: Time-based comparisons
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(a) 2D image reconstruction
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(b) 3D shape reconstruction

Figure 1. Comparison of training convergence (in time) of a Gaussian-activated neural field for various preconditioners on 2D image
reconstruction and (Fig. 1a ) and 3D shape reconstruction task (Fig. 1b).
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3.2. Additional results: 2D Image Reconstruction

3.2.1. Quantitative results: Comparison of training convergence for various preconditioners on sine, wavelet, ReLU-PE
and ReLU networks.
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(a) sine
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(b) wavelet
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(c) ReLU (PE)
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Figure 2. Comparison of training convergence for various preconditioners on sine and wavelet-activated neural fields. We evaluated
each neural field on lion instance from the DIV2K dataset. ESGD consistently demonstrates superior convergence compared to other
preconditioners on other activations. Note: The analysis for Gaussian network is available in Fig. 5 in the main paper.
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Figure 3. Comparison of training convergence for ESGD vs. Adam optimizer on Gaussian, sine and wavelet-activated neural fields.
We evaluated each neural field on all 14 test instances from the DIV2K dataset. Interestingly, we observed that sine-based network trained
with Adam reached a lower loss than those trained with ESGD during the beginning of the optimization. However, ESGD eventually
caught up and converged to a lower minima compared to Adam. Overall, ESGD demonstrates superior convergence compared to Adam on
all activations. Note: The plot shows the mean MSE loss averaged across 14 runs.
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3.2.2. Qualitative results: Gaussian

(a) Adam, PSNR: 27.60 (b) AdaHessian(J), PSNR: 32.87

(c) AdaHessian(E), PSNR: 32.24 (d) Kronecker, PSNR: 28.51

(e) ESGD, PSNR: 29.79 (f) Groundtruth

Figure 4. Comparison of the intermediate reconstructions produced by Gaussian-activated neural field at epoch 300.
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3.2.3. Qualitative results: sine

(a) Adam, PSNR: 26.11 (b) AdaHessian(J), PSNR: 25.92

(c) AdaHessian(E), PSNR: 34.71 (d) Kronecker, PSNR: 26.59

(e) ESGD, PSNR: 36.16 (f) Groundtruth

Figure 5. Comparison of the intermediate reconstructions produced by sine-activated neural field at epoch 300.
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3.2.4. Qualitative results: wavelet

(a) Adam, PSNR: 30.67 (b) AdaHessian(J), PSNR: 37.10

(c) AdaHessian(E), PSNR: 30.90 (d) Kronecker, PSNR: 31.77

(e) ESGD, PSNR: 41.08 (f) Groundtruth

Figure 6. Comparison of the intermediate reconstructions produced by wavelet-activated neural field at epoch 300.
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3.3. Additional results: 3D Shape Reconstruction

3.3.1. Quantitative results: Comparison of training convergence for various preconditioners
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Figure 7. Comparison of training convergence for various preconditioners on sine and wavelet-activated neural fields. We evaluated
each neural field on armadillo test instances from the Stanford dataset. ESGD demonstrates superior convergence compared to other
preconditioners, striking a balance between accuracy and computational efficiency. Note: The analysis for Gaussian network is available
in Fig. 6 in the main paper.

3.3.2. Quantitative results: Comparison of training convergence for Adam and ESGD
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Figure 8. Comparison of training convergence for ESGD vs. Adam on Gaussian, sine and wavelet-activated neural fields. We
evaluated each neural field on five instances (armadillo, bunny, bimba, dragon, gargoyle) from the Stanford dataset. Overall, ESGD
demonstrates superior convergence compared to Adam. Note: The plot shows the mean BCE loss averaged across 5 runs.
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3.4. Qualitative Results
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(a) Adam (b) ESGD
Figure 9. Compared to Gaussian-activated network trained with Adam (Fig. 9a), ESGD (Fig. 9b) has reconstructed the shapes with
significantly improved fidelities at epoch 500. (zoom in 4× for better clarity.)
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3.5. Additional results: Neural Radiance Fields (NeRF)

3.5.1. Results on Blender dataset

Adam ESGD-Max
Scene Train Iteration Time Test Iteration Time Test

PSNR ↓ (s)↓ PSNR ↑ SSIM ↑ LPIPS ↓ ↓ (s)↓ PSNR ↑ SSIM ↑ LPIPS ↓
lego 26.50 200K 341.81 24.93 0.86 0.12 140K 191.00 25.37 0.87 0.11
chair 29.95 200K 339.29 32.79 0.97 0.04 140K 182.71 33.37 0.98 0.03

drums 23.46 200K 356.33 23.73 0.86 0.16 150K 195.21 24.38 0.88 0.13
hotdog 33.86 200K 352.58 30.69 0.94 0.08 100K 132.40 31.28 0.95 0.07
ficus 26.00 200K 346.23 25.10 0.91 0.08 140K 181.14 25.93 0.92 0.07

materials 28.62 120K 115.34 24.65 0.89 0.09 200K 260.78 24.30 0.88 0.11
ship 28.58 140K 134.47 28.06 0.78 0.18 200K 244.31 27.17 0.74 0.25
mic 32.97 170K 164.00 33.22 0.97 0.03 200K 166.68 32.94 0.97 0.03

Table 1. Quantitative results of Gaussian-NeRF on instances from the 360◦ BLENDER dataset [7]. Note that the report time solely
refers to the optimization update step. Training convergence is determined based on the training curve displayed on TensorBoard, with a
smoothing factor of 0.8− 0.9 applied for better visualization.
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3.5.2. Results on Bleff dataset

Adam ESGD-Max
Scene Train Iteration Time Test Iteration Time Test

PSNR ↓ (s)↓ PSNR ↑ SSIM ↑ LPIPS ↓ ↓ (s)↓ PSNR ↑ SSIM ↑ LPIPS ↓
balls 37.78 200K 522.56 37.11 0.93 0.08 150K 392.65 37.15 0.93 0.09
deer 47.50 150K 359.30 46.73 0.99 0.02 150K 360.76 46.53 0.99 0.02
chair 36.38 180K 492.08 36.27 0.90 0.17 180K 485.32 36.02 0.89 0.18
root 38.58 200K 501.13 37.4 0.98 0.03 150K 394.45 37.38 0.98 0.03

roundtable 48.25 160K 367.38 47.36 1.00 0.01 150K 341.11 46.90 0.99 0.01

Table 2. Quantitative results of Gaussian-NeRF on instances from the BLEFF dataset [12]. Note that the report time solely refers to the
optimization update step. Training convergence is determined based on the training curve displayed on TensorBoard, with a smoothing
factor of 0.8− 0.9 applied for better visualization.
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3.5.3. Novel View Synthesis Results for Sec. 5.3 in the main paper

(a) 1st View (b) 50th View

(c) 1st View (d) 50th View

(e) 1st View (f) 50th View

Figure 10. Novel view synthesis results using Gaussian network trained with ESGD-Max.
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3.6. Additional results: Video Reconstruction
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Figure 11. Comparison of training convergence for ESGD vs. Adam on Gaussian, sine and wavelet-activated neural fields. We
evaluated each neural field on the bikes sequence available from the scikit-video. Interestingly, we observed that Gaussian and wavelet
networks trained with Adam reached a lower loss than those trained with ESGD during the beginning of the optimization. However,
ESGD eventually caught up and converged to a lower minima. In contrast, sine-activated networks trained with Adam diverged rapidly
after several epochs. We speculated that this divergence may be due to the initialization method, which could cause the network weights
to become poorly conditioned in video reconstruction task. ESGD did not exhibit the same divergence, likely benefiting from better
preconditioning when computing the updates.

4. Reproducibility and Implementation Details

4.1. 2D Image Reconstruction

Data. We evaluated on all the test instances from DIV2K dataset [1]. We resized the original images, initially captured at
a resolution of 512× 512 pixels, to a resolution of 256× 256 pixels. We used minibatch size of 512 during training.

Architecture. We used a 5-layer network, where each hidden layer contains 256 neurons. For Gaussian-activated neural
field, we used Gaussian activation defined as ϕ(x) = exp(−0.5x2

σ2 ), and we used σ = 0.05. For sine-activated neural
field, we used sine activation defined as ϕ(x) = sin(ωx), and we used ω = 30. As for wavelet-activated neural field, we
employed wavelet activation defined as ϕ(x) = x → cos(ω0x) exp(−s20x2). We used ω0 = 10 and s0 = 10. We used
ϕ(x) = {[cos(2kπx), sin(2kπx)]}L−1

k=0 for the positional encoding, where L = 8.

Initialization. We used default PyTorch initialisation (Kaiming Uniform) for Gaussian and wavelet-activated neural fields.
As for sine-activated neural field, we employed the initialization proposed by Sitzmann et al. [10].

Hyperparameters. Unless specified, we used the default parameter values for each optimizer. For the Adam optimizer, we
used a learning rate of 1 × 10−4 for Gaussian, sine and wavelet-activated neural fields and a learning rate of 1 × 10−3 for
ReLU-PE network. For AdaHessian(J) and AdaHessian(E), we set the learning rate to 0.15 and used a hessian power of 1.
For Kronecker-based preconditioner, we used a learning rate of 0.1 and performed the inverse update every 100 iterations.
For Shampoo, we used a learning rate of 0.1 and 0.01 for Gaussian/wavelet networks and sine network, respectively. As for
ESGD, we chose a learning rate of 0.15. We incorporated a warmup strategy. Specifically, we implemented the equilbrated
gradient preconditioning for the first 50 iterations as a warmup phase, followed by subsequent updates every N iterations,
with N set to 100.

Hardware. We ran all experiments on a NVIDIA 4090 GPU with 24Gb of memory.
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4.2. 3D Shape Reconstruction

Data. We use the Armadillo, Bunny, Bimba, Gargoyle and Dragon from the Stanford 3D Scanning Repository 1. For train-
ing, we sampled one million 3D points – one-third of the points were sampled uniformly within the volume, and remaining
two-thirds of the points were sampled near the mesh surface and perturbed with random Gaussian noise using sigma of 0.1
and 0.01, respectively.

Architecture. We used a 5-layer network, where each hidden layer contains 256 neurons. For Gaussian-activated neural
field, we used σ = 0.09. For sine network, we used ω = 30. As for wavelet network, we used ω0 = 10 and s0 = 10. For the
ReLU-PE network, we used ϕ(x) = {[cos(2kπx), sin(2kπx)]}L−1

k=0 for the positional encoding, where L = 8.

Initialization. We used default PyTorch initialisation (Kaiming Uniform) for Gaussian-INR and ReLU/ReLU-PE INRs in
all the experiments. As for sine-activated neural field, we employed the initialization proposed by Sitzmann et al. [10].

Hyperparameters. Unless specified, we used the default parameter values for each optimizer. For the Adam optimizer,
we used a learning rate of 1 × 10−4. For AdaHessian(J) and AdaHessian(E), we set the learning rate to 0.15 and used a
hessian power of 1. For Kronecker-based preconditioner, we used a learning rate of 0.1, Tikhonov regularization parameter
of 0.01, and performed the inverse update every 100 iterations. For Shampoo, we used a learning rate of 0.1. As for ESGD,
we chose a learning rate of 0.15. We incorporated a warmup strategy. Specifically, we implemented the equilbrated gradient
preconditioning for the first 50 iterations as a warmup phase, followed by subsequent updates every N iterations, with N set
to 100.

Hardware. We ran all experiments on a NVIDA 4090 GPU with 24Gb of memory.

4.3. Neural Radiance Fields (NeRF)

In this section, we provide the reproducibility and implementation details for the experiments in Sec. 5.3 of the main paper,
as well as those in Sec. 3.5.1 for the Blender 360 [7] dataset as well and Sec. 3.5.2 for the Blender Forward-Facing Dataset
(BLEFF).

4.3.1. Forward-Facing dataset LLFF dataset [6]

Training details. We resized the images to 480 × 640 pixels. We trained all models for 200K iterations. As in [2, 4], we
trained a single model without additional hierarchical sampling. During each optimization step, we randomly sampled 2048
pixel rays, and integrated 128 points along each ray.

Hyperparameters. Unless specified, we used the default parameter values for each optimizer. For the Adam optimizer,
we used a learning rate of 1 × 10−4 and customised step learning rate schedule. For the ESGD optimizer, we started with a
learning rate of 1 and exponentially decayed it to 0.01.

Hardware. The experiments are ran on a6000 GPU.

4.3.2. Blender 360◦ dataset [6]

Training details. We resized the images to 400 × 400 pixels. We trained all models for 200K iterations. Following the
approach in [2, 4], we trained a single model without additional hierarchical sampling. For each optimization step, we
randomly sampled 2048 pixel rays, and integrated 128 points along each ray.

1http://graphics.stanford.edu/data/3Dscanrep
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Hyperparameters. Unless specified, we used the default parameter values for each optimizer. For the Adam optimizer,we
started with a learning rate of 1× 10−4 and exponentially decayed it to 1× 10−6. For the ESGD optimizer, we started with
a learning rate of 1 and exponentially decayed it to 0.1.

Hardware. The experiments are ran on a a6000 GPU.

4.3.3. Blender Forward-Facing Dataset (BLEFF) dataset [12]

Training details. We resized the images to 400 × 400 pixels. We trained all models for 200K iterations. Following the
approach in [2, 4], we trained a single model without additional hierarchical sampling. For each optimization step, we
randomly sampled 2048 pixel rays, and integrated 128 points along each ray.

Hyperparameters. Unless specified, we used the default parameter values for each optimizer. For the Adam optimizer,we
started with a learning rate of 1× 10−4 and exponentially decayed it to 1× 10−6. For the ESGD optimizer, we started with
a learning rate of 1 and exponentially decayed it to 0.01.

Hardware. The experiments are ran on a a6000 GPU.
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