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Supplementary Material

In this supplementary material, we offer more details of
our work, Ev-3DOD. Specifically, we provide
• Implementation details in Section A;
• Runtime analysis of our framework, Ev-3DOD, in Sec-

tion B;
• Detailed processing and annotation processes about

event-based 3D detection datasets in Section C;
• Additional qualitative results and video demo in Sec-

tion D;
• Hyper-parameter analysis in Section E;
• Visualization of event and voxel features in Section F;

A. Implementation Details

The model is trained using a two-stage strategy inspired by
previous works [9, 16] that leverages pre-trained encoders.
In the first stage, 10 FPS LiDAR and images are utilized
to train the active timestamp RGB-LiDAR Region Proposal
Network. In the second stage, all sensor data are incorpo-
rated to train the blind time modules with 100 FPS ground
truth bounding boxes. In the first stage, the Region Proposal
Network is trained for 15 epochs with a batch size of 4 and
a learning rate of 0.001, using the Adam optimizer [8] with
the scheduling strategy from [12]. In the second stage, the
blind time modules are trained for 15 epochs with a batch
size of 3, maintaining the same learning rate of 0.001. The
loss function incorporates weights λ1 = 1.0 and λ2 = 1.0.

Since only the front camera is used, we followed the
KITTI [6] methodology, utilizing only LiDAR point clouds
and ground truth that fall within the camera’s field of
view. The point cloud spans [0.0, 75.2m] along the X axis,
[−75.2m, 75.2m] along the Y axis, and [−2m, 4m] along
the Z axis, with a voxel size of (0.1m, 0.1m, 0.15m). Ev-
Waymo uses a resolution of 960×640, while DSEC-3DOD

adopts 320× 240 for both images and events using a down-
sample. The event stream is converted into a voxel grid with
5 bins.

Waymo provides dense LiDAR data with 64 channels,
whereas DSEC has only 16 channels, making it signifi-
cantly sparser. Due to this sparsity, we attempted to accu-
mulate LiDAR frames, but previous methods still struggled
to train stably. Consequently, following prior works [14,
19], we used disparity maps to generate 3D points instead
of directly utilizing raw LiDAR data. We acknowledge that
these disparity-based 3D points are obtained through offline
processing. However, the key focus of this work is not to
achieve state-of-the-art performance using LiDAR but to
demonstrate the feasibility of blind time object detection
using event cameras. Therefore, using these 3D points does
not pose an issue for our study. Nevertheless, to enhance the
usability of DSEC-3DOD dataset for future research, we
have conducted additional experiments using raw LiDAR
data and have shared the results at the following link1.

The voxel data is encoded using a 3D backbone [20],
while the image and event data are processed using a com-
mon image encoder [10]. The small version of our model is
discussed in Section B. In the Virtual 3D Event Fusion mod-
ule, each box proposal of size S × S × S is set to 6× 6× 6
sub-voxels.

B. Inference Time

To measure the inference time of our method and other
approaches, we followed the speed measurement protocol
from conventional event-based object detection [4], using
the code provided at the given link2. We also performed

1https://github.com/mickeykang16/Ev3DOD/tree/
main/Benchmark

2https://github.com/uzh-rpg/RVT

Table A. Performance and runtime comparison on the Ev-Waymo dataset. Evaluated at 100 FPS for t = 0, 0.1, . . . , 0.9. Offline results,
which rely on sensor data from timestamp 1, future information, and additional interpolation algorithms, are excluded from evaluation.

Methods 3D Detection
Modality

ALL
VEH (AP/APH) PED (AP/APH) CYC (AP/APH)

FPS(mAP/mAPH)
L2 L1 L2 L1 L2 L1 L2

VoxelNeXt [2] L 33.32/31.70 44.40/44.10 41.78/41.49 40.52/36.23 36.93/32.96 24.40/23.73 21.24/20.66 17.34
HEDNet [17] L 31.57/29.90 42.03/41.71 39.32/39.02 38.86/34.43 35.67/31.53 22.64/21.99 19.72/19.14 12.84

Focals Conv [1] L + I 26.27/25.01 37.31/37.01 36.60/36.31 29.20/26.16 28.41/25.44 14.30/13.78 13.79/13.29 6.08
LoGoNet [9] L + I 33.27/31.75 44.14/43.87 41.73/41.47 39.98/35.84 36.48/32.67 24.71/24.15 21.59/21.10 10.68

Ev-3DOD (Ours) L + I + E 48.06/45.60 60.30/59.95 59.19/58.85 57.40/50.78 55.30/48.93 31.08/30.38 29.69/29.03 27.09
Ev-3DOD-Small (Ours) L + I + E 44.21/42.01 57.95/57.62 56.89/56.57 51.87/45.91 49.94/44.21 27.01/26.44 25.80/25.25 54.14

https://github.com/mickeykang16/Ev3DOD/tree/main/Benchmark
https://github.com/mickeykang16/Ev3DOD/tree/main/Benchmark
https://github.com/uzh-rpg/RVT
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Figure A. The overall pipeline for annotation. To enhance data quality, we perform software-based alignment and generate fine-grained
100 FPS ground truths through additional annotation and post-processing. The red process is applied only to the DSEC-3DOD dataset,
while the blue process is applied to both the DSEC-3DOD and Ev-Waymo datasets.

GPU warm-up and ensured GPU-CPU synchronization us-
ing ‘torch.cuda.synchronize()’ to accurately measure infer-
ence time. We measured inference time on a single NVIDIA
A6000 GPU with a batch size of 1 and additionally designed
a lightweight model, Ev-3DOD-Small, to evaluate both per-
formance and speed. Specifically, Ev-3DOD-Small retains
the overall structure of Ev-3DOD but replaces the event fea-
ture encoder with three simple convolution layers, reduces
the number of pooling layers, and decreases the grid size in
the Virtual 3D Event Fusion module.

Table A compares performance and inference time
among online methods. Looking at the performance met-
rics, our method, leveraging the event camera to infer dur-
ing the blind time, achieves the best and second-best re-
sults across both approaches, with a significant margin over
other methods. In terms of inference time, measured in FPS,
even our full model (Ev-3DOD) achieves the fastest speed
compared to other methods. This efficiency is attributed to
our approach, which avoids recalculating point clouds and
images during the blind time interval by explicitly leverag-
ing events to update and reuse data at the present moment,
making it highly cost-effective. Notably, when parameters
are reduced, there is almost a twofold improvement in FPS
with minimal performance degradation. This demonstrates
that our method can effectively estimate 3D motion using
event information without relying on a large number of pa-
rameters. We believe that the proposed Ev-3DOD, with its
fast runtime using the high-frequency properties of an event
camera, provides a promising direction for advancing future
research in 3D object detection using event cameras.

C. Event-based 3D Object Detection Datasets

In this section, we provide additional details about the
dataset that may not have been fully covered in the main pa-
per. Specifically, we delve into its structure, pre-processing
steps, and unique characteristics critical for understanding

the context and experimental results. By offering this com-
prehensive view, we aim to enhance the clarity and repro-
ducibility of our work.

C.1. DSEC-3DOD Dataset
The DSEC [5] dataset provides LiDAR, stereo RGB im-
ages, and stereo events from diverse driving scenarios. To
date, the DSEC dataset has been extensively studied for 2D
perception tasks (e.g. 2D object detection, semantic seg-
mentation). In this study, we utilized this dataset for 3D
perception for the first time and established the process of
Fig. A to provide fine-grained 100 FPS 3D detection ground
truth.
a. LiDAR-IMU SLAM
For 3D detection annotation, a LiDAR sensor providing ac-
curate depth information was designated as the reference
sensor. The odometry of the reference sensor was esti-
mated to synchronize LiDAR data with image timestamps,
enabling accurate inter-modality alignment. Manual la-
beling was performed on a dense point cloud generated
through pose-based LiDAR accumulation. To ensure pre-
cise LiDAR pose estimation, the LIO-Mapping [15] method
was employed, consistent with the approach utilized in the
DSEC dataset. The poses for the 10 FPS LiDAR data were
subsequently obtained.
b. Sequence Sampling
As mentioned in the main paper, we provide annotations
for the “zurich city” sequence. The DSEC provides images
at 20 Hz and LiDAR data at 10 Hz. Images are sampled
at 10 Hz following LiDAR. Although both the images and
LiDAR data are sampled at the same 10 Hz rate, the lack
of hardware time synchronization introduces temporal mis-
alignment. To solve this problem, we utilize the sequence
sampling strategy. Fig. B illustrates the absolute time differ-
ence between the nearest image and LiDAR frames. Due to
the periodic discrepancy between the two sensors, this mis-
alignment repeats approximately every 237 frames, with a
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Figure B. The time difference between images and closest Li-
DAR. To minimize temporal misalignment, 31 frames were sam-
pled around the frame with the minimum time offset.

maximum time offset of half a sensor period (i.e., 50ms).
Therefore, we sampled 31 frames centered around the point
of minimal time offset, reducing the maximum misalign-
ment of 13ms. As a result of sampling, the DSEC-3DOD
dataset consists of 178 sequence chunks, each comprising
31 frames. Adjacent chunks are separated by a time gap of
over 20 seconds, ensuring entirely different distributions in
driving scenes. Table C and Table D show the train and test
splits.
c. LiDAR-Image Synchronization
Although the sequence sampling was designed to mini-
mize time misalignment, synchronization errors still persist.
Therefore, we further aligned the LiDAR data to the image
timestamps using pose-based adjustments.

For an arbitrary RGB image It at time t, the two closest-
time LiDAR point clouds, Pt0 and Pt1 , are identified, where
t0 < t < t1. Assume the corresponding poses Xt0 and Xt1

are available from the mapping of Process a. Each pose
is represented as a 3D coordinate and quaternion, denoted
as X = (x, y, z,Q), where Q ∈ R4. The image-aligned
LiDAR pose Xt is computed by interpolating Xt0 and Xt1 .
The position is interpolated linearly, while spherical linear
interpolation (SLERP) [11] is applied for the quaternions.

The synchronized LiDAR point cloud Pt is obtained us-
ing the transformation Pt = T−1

t Tt′Pt′ , where Tt and Tt′

are transformation matrices corresponding to the poses Xt

and Xt′ , respectively. Here, t′ is the nearest time to t as,

t′ =

{
t0 if |t− t0| < |t− t1|,
t1 otherwise.

(1)

The effect of pose-based LiDAR synchronization is
demonstrated in Fig. C. LiDAR-image misalignment due to

Before
LiDAR-Image Synchronization 

After
LiDAR-Image Synchronization 

Figure C. LiDAR projection on images before pose-based LiDAR
synchronization (left) and after synchronization (right).

time offsets is most evident in scenes with large motions or
significant rotations. By transforming the nearest LiDAR
point cloud to the pose of the image timestamp, projection
errors between sensors caused by time misalignment were
minimized.
d. Point Cloud Densification
Raw LiDAR data is inherently sparse, which can lead to
reduced accuracy in ground truth bounding boxes if used
directly for annotation. To address this, we utilized an accu-
mulated point cloud created by combining multiple LiDAR
scans with their relative poses. As noted in the DSEC [5],
LiDAR accumulation does not effectively handle occlusions
or moving objects, both of which are critical considerations
in the labeling process. To mitigate these issues, we em-
ployed filtered results (i.e., disparity) during the annotation
process.
e. Manual Annotation
Annotation experts labeled 3D bounding boxes on the den-
sified 10 FPS LiDAR data, ensuring accuracy by consid-
ering both the LiDAR data and images. The ground truth
consists of three classes: vehicle, pedestrian, and cyclist.
Detailed annotation rules were derived from the guidelines
provided by the Waymo Open Dataset [13]. To maintain
high-quality annotations, bounding boxes containing fewer
than two points or positioned beyond 50 meters were ex-
cluded from the ground truth.
f. Annotation Interpolation
To generate 100 FPS annotations from the manually labeled
10 FPS annotations, bounding boxes were interpolated to
create ground truth for blind times where neither LiDAR
nor images were available. Linear interpolation was applied
to the bounding box pose and size, while SLERP interpola-
tion was applied for rotations. The interpolated annotations
were subsequently refined through the following process.



g. Sensor Data Interpolation
In process f, the automatically interpolated annotations are
generally accurate but may not fully capture the dynamics
of real-world motion. To enhance the quality of these anno-
tations, sensor data was generated for the blind times. For
images, realistic video frames were produced using a recent
event-based video frame interpolation method [7]. Simi-
larly, the latest techniques [18] were utilized to generate ac-
curate and realistic intermediate point cloud data.
h. Annotation Filter and Refinement
The interpolated sensor data was employed to refine the an-
notations for the blind times. In most cases with minimal
motion, bounding box interpolation alone yielded ground
truth that aligned well with the sensor data. In such
instances, refinements were avoided to preserve smooth
bounding box poses and ensure temporal consistency. How-
ever, if the interpolated labels were misaligned with the sen-
sor data or if sensor data was unavailable, the affected labels
were filtered out.

C.2. Ev-Waymo Dataset

Event Synthesis. The Waymo Open Dataset (WOD) pro-
vides 10 FPS synchronized images, LiDAR, and 3D bound-
ing box labels. To generate the events, we utilize a widely
adopted event simulation model [3] to synthesize the events
from video data. This enables us to utilize temporally dense
events between image and LiDAR active timestamps for
training and testing.
Annotation Interpolation and Refinement. Since WOD
provides dense 10 FPS annotations, we can obtain 100 FPS
ground truth through annotation interpolation and refine-
ment. A process similar to the f, g, and h steps in DSEC-
3DOD dataset processing was employed. We interpolated
the 10 FPS bounding box information, including pose, di-
mensions, and heading, provided by WOD to generate 100
FPS data. In addition, we synthesized blind-time data of
camera and LiDAR using an interpolation algorithm for re-
finement and filtering, ensuring higher quality.

D. More Qualitative Results and Videos

To provide a more comprehensive understanding of the pro-
posed model, we present additional qualitative results in
Figures E, F, and G, showcasing its performance on the
DSEC-3DOD dataset. The proposed method consistently
predicts bounding boxes that closely align with the ground
truth across various challenging environments.

Figure E illustrates a challenging scene involving a bus,
where size estimation is particularly difficult. The offline
method, even with access to future information, fails to de-
tect certain instances. Likewise, the online method demon-
strates increasing errors compared to the ground truth as
time progresses beyond the active timestamp. In contrast,

the proposed method shows robust performance, generating
predictions that closely align with the ground truth labels.

The introduced DSEC-3DOD dataset features challeng-
ing scenarios, including night scenes, as shown in Fig. F.
Unlike the Ev-Waymo dataset, which cannot leverage
challenging illumination conditions to generate synthetic
events, our proposed real event dataset enables validation
in such scenarios. In the night scene, the proposed method
exhibits accurate box predictions compared to both the of-
fline and online methods.

Figure H, I, and J present the results on the Ev-Waymo
dataset, which features numerous complex sequences with
high object density. The proposed model effectively pre-
dicts complex object motions, producing bounding boxes
closely aligned with the ground truth. In such scenes, even
with access to future data, interpolating sensor informa-
tion during blind times remains challenging, which compli-
cates precise bounding box predictions. Consequently, the
qualitative results on Ev-Waymo demonstrate that the pro-
posed method outperforms others by delivering more accu-
rate bounding boxes.

We provide a short video to showcase the datasets used
in the experiments and the results on sequential data. The
proposed method demonstrates robust performance across
various environments in both the DSEC-3DOD dataset and
the Ev-Waymo dataset. Notably, it accurately estimates the
motion of object bounding boxes even in challenging night
scenes within the DSEC-3DOD dataset.

The proposed model performs 3D detection during a sin-
gle blind time using data from a single active timestamp
and an event stream. When new LiDAR and RGB data be-
come available, the model relies on the most recent data.
Consequently, discontinuities in 3D detection may occur at
each active timestamp. In this paper, we lay the foundation
for a methodology that combines conventional sensors and
events for blind time 3D detection. However, in further re-
search, incorporating past information could improve both
accuracy and temporal consistency.

E. Hyper-parameter Analysis
As shown in Table B, we conduct an ablation study on the
loss weights. The box regression loss and confidence pre-
diction loss weights were set to 0.1, 1.0, and 10.0, respec-
tively, during model training. The results demonstrated that
the model remained robust, producing consistent outcomes
despite changes in the loss magnitudes.

F. Visualization of Event and Voxel Features.
To analyze the role of each modality visually, we visualized
event and voxel features in Fig. D. When visualizing the
event features in 2D, they primarily activate along edges,
with particularly strong activations on moving objects. Ad-



Table B. The result according to hyper-paramter in Eq. (3) on Ev-
Waymo LEVEL 2 (L2). λ1 and λ2 refer to the weight of box
regression loss and binary cross entropy loss, respectively.

λ1 \ λ2
0.1 1.0 10.0

mAP mAPH mAP mAPH mAP mAPH
0.1 47.32 44.87 47.70 45.22 47.14 44.70
1.0 47.72 45.25 48.06 45.60 46.98 44.53
10.0 47.46 45.02 47.20 44.74 47.32 44.86

RGB Event 2D Feature

Event Voxel Feature LiDARVoxel Feature

Figure D. Visualization of features generated from event and Li-
DAR.

ditionally, when comparing event and LiDAR features by
projecting them into 3D, we observe that LiDAR features
are highly activated across all regions containing 3D infor-
mation, whereas 3D event features remain predominantly
activated around moving objects. The event feature visual-
ization highlights regions with frequent events around mov-
ing objects, effectively capturing dynamic areas of interest.
Thus, by effectively leveraging multi-modal features from
events and pointclouds, it is visually evident that 3D mo-
tion can be reliably estimated.
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Table C. The train sequence splits of DSEC-3DOD dataset.

Split Time Sequence # Frames # GT Scenes
Train Day zurich city 00 a 31 301

zurich city 00 b 155 1,505
zurich city 01 a 62 602
zurich city 01 b 155 1,505
zurich city 01 c 124 1,204
zurich city 01 d 93 903
zurich city 01 e 217 2,107
zurich city 01 f 155 1,505
zurich city 02 a 31 301
zurich city 02 b 124 1,204
zurich city 02 c 279 2,709
zurich city 02 d 155 1,505
zurich city 02 e 186 1,806
zurich city 04 a 93 903
zurich city 04 c 93 903
zurich city 04 d 93 903
zurich city 04 e 31 301
zurich city 04 f 124 1,204
zurich city 05 a 217 2,107
zurich city 05 b 124 1,204
zurich city 06 a 186 1,806
zurich city 07 a 124 1,204
zurich city 08 a 62 602
zurich city 11 a 31 301
zurich city 11 b 93 903
zurich city 11 c 155 1,505

Day Total 3,193 31,003
Night zurich city 03 a 62 602

zurich city 09 a 217 2,107
zurich city 09 b 31 301
zurich city 09 c 155 1,505
zurich city 09 d 124 1,204
zurich city 09 e 93 903
zurich city 10 a 248 2,408
zurich city 10 b 217 2,107

Night Total 1,147 11,137
Train Total 4,340 42,140

Table D. The test sequence splits of DSEC-3DOD dataset.

Split Time Sequence # Frames # GT Scenes
Test Day zurich city 00 a 62 602

zurich city 00 b 31 301
zurich city 01 e 31 301
zurich city 01 f 62 602
zurich city 02 b 31 301
zurich city 02 c 93 903
zurich city 02 d 62 602
zurich city 04 c 31 301
zurich city 04 d 31 301
zurich city 05 b 62 602
zurich city 06 a 31 301
zurich city 07 a 62 602
zurich city 08 a 31 301
zurich city 11 b 155 1,505
zurich city 11 c 93 903

Day Total 868 8,428
Night zurich city 03 a 31 301

zurich city 09 a 31 301
zurich city 09 c 31 301
zurich city 09 d 93 903
zurich city 10 a 31 301
zurich city 10 b 93 903

Night Total 310 3,010
Test Total 1178 11,438



Table E. The train/test sequence splits of Ev-Waymo dataset.

Dataset Ev-Waymo

Split Sequence Name No.
Seq.

No.
Labeled
Scenes

Train

segment-207754730878135627 1140 000 1160 000, segment-13840133134545942567 1060 000 1080 000,
segment-8327447186504415549 5200 000 5220 000, segment-10964956617027590844 1584 680 1604 680,

segment-11918003324473417938 1400 000 1420 000, segment-15448466074775525292 2920 000 2940 000,
segment-14830022845193837364 3488 060 3508 060, segment-11379226583756500423 6230 810 6250 810,

segment-7861168750216313148 1305 290 1325 290, segment-13506499849906169066 120 000 140 000,
segment-6229371035421550389 2220 000 2240 000, segment-15882343134097151256 4820 000 4840 000,
segment-14098605172844003779 5084 630 5104 630, segment-8582923946352460474 2360 000 2380 000,
segment-16485056021060230344 1576 741 1596 741, segment-915935412356143375 1740 030 1760 030,
segment-3002379261592154728 2256 691 2276 691, segment-4348478035380346090 1000 000 1020 000,

segment-2036908808378190283 4340 000 4360 000, segment-15844593126368860820 3260 000 3280 000,
segment-5835049423600303130 180 000 200 000, segment-15696964848687303249 4615 200 4635 200,

segment-7543690094688232666 4945 350 4965 350, segment-16372013171456210875 5631 040 5651 040,
segment-14193044537086402364 534 000 554 000, segment-550171902340535682 2640 000 2660 000,
segment-4641822195449131669 380 000 400 000, segment-7239123081683545077 4044 370 4064 370,

segment-11928449532664718059 1200 000 1220 000, segment-5100136784230856773 2517 300 2537 300,
segment-13182548552824592684 4160 250 4180 250, segment-14004546003548947884 2331 861 2351 861,

segment-2570264768774616538 860 000 880 000, segment-7440437175443450101 94 000 114 000,
segment-15717839202171538526 1124 920 1144 920, segment-8148053503558757176 4240 000 4260 000,
segment-16977844994272847523 2140 000 2160 000, segment-5451442719480728410 5660 000 5680 000,
segment-7290499689576448085 3960 000 3980 000, segment-16801666784196221098 2480 000 2500 000,
segment-4916527289027259239 5180 000 5200 000, segment-16202688197024602345 3818 820 3838 820,
segment-9758342966297863572 875 230 895 230, segment-12161824480686739258 1813 380 1833 380,
segment-14369250836076988112 7249 040 7269 040, segment-2752216004511723012 260 000 280 000,

segment-10444454289801298640 4360 000 4380 000, segment-17388121177218499911 2520 000 2540 000,
segment-7885161619764516373 289 280 309 280, segment-16561295363965082313 3720 000 3740 000,
segment-11199484219241918646 2810 030 2830 030, segment-4575961016807404107 880 000 900 000,

segment-7566697458525030390 1440 000 1460 000, segment-10275144660749673822 5755 561 5775 561,
segment-6193696614129429757 2420 000 2440 000, segment-12251442326766052580 1840 000 1860 000,
segment-13271285919570645382 5320 000 5340 000, segment-9015546800913584551 4431 180 4451 180,

segment-10596949720463106554 1933 530 1953 530, segment-15942468615931009553 1243 190 1263 190,
segment-15125792363972595336 4960 000 4980 000, segment-1422926405879888210 51 310 71 310,

segment-5576800480528461086 1000 000 1020 000, segment-1255991971750044803 1700 000 1720 000

64 126,330

Test

segment-18446264979321894359 3700 000 3720 000, segment-17152649515605309595 3440 000 3460 000,
segment-16213317953898915772 1597 170 1617 170, segment-5183174891274719570 3464 030 3484 030,

segment-3126522626440597519 806 440 826 440, segment-3077229433993844199 1080 000 1100 000,
segment-10289507859301986274 4200 000 4220 000, segment-30779396576054160 1880 000 1900 000,
segment-9243656068381062947 1297 428 1317 428, segment-2834723872140855871 1615 000 1635 000,

segment-2736377008667623133 2676 410 2696 410, segment-15948509588157321530 7187 290 7207 290,
segment-9231652062943496183 1740 000 1760 000, segment-4854173791890687260 2880 000 2900 000,
segment-6324079979569135086 2372 300 2392 300, segment-6001094526418694294 4609 470 4629 470

16 31,550
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Figure E. Qualitative comparisons with other offline and online methods on the DSEC-3DOD dataset. t = 0 represents the active time,
while t = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 denote the blind times. The blue box indicates ground truth, and the red box shows
predictions. For better understanding, we overlaid the results onto the images generated by the interpolation method [7].
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Figure F. Qualitative comparisons with other offline and online methods on the DSEC-3DOD dataset. t = 0 represents the active time,
while t = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 denote the blind times. The blue box indicates ground truth, and the red box shows
predictions. For better understanding, we overlaid the results onto the images generated by the interpolation method [7].
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Figure G. Qualitative comparisons with other offline and online methods on the DSEC-3DOD dataset. t = 0 represents the active time,
while t = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 denote the blind times. The blue box indicates ground truth, and the red box shows
predictions. For better understanding, we overlaid the results onto the images generated by the interpolation method [7].
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Figure H. Qualitative comparisons of our method with other offline and online evaluations on the Ev-Waymo dataset. t = 0 represents the
active time, while t = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 denote the blind times. The blue box represents the ground truth, while the
red box shows the prediction results of each method. For easier understanding, images at active timestamps 0 and 1 are overlaid.
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Figure I. Qualitative comparisons of our method with other offline and online evaluations on the Ev-Waymo dataset. t = 0 represents the
active time, while t = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 denote the blind times. The blue box represents the ground truth, while the
red box shows the prediction results of each method. For easier understanding, images at active timestamps 0 and 1 are overlaid.
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Figure J. Qualitative comparisons of our method with other offline and online evaluations on the Ev-Waymo dataset. t = 0 represents the
active time, while t = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 denote the blind times. The blue box represents the ground truth, while the
red box shows the prediction results of each method. For easier understanding, images at active timestamps 0 and 1 are overlaid.
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