A. Study on Model-to-Model Regularization

In this section, we further study the topic of model-to-model
regularization. We first begin by revisiting previous works on
model-to-model regularization, highlighting the differences
from our approach. Next, we provide experimental results
on using a pre-trained teacher for regularization (i.e., teacher-
student regularization). Using this, we show the strength of
our approach against previous model-to-model regularization
methods.

Previous Methods: teacher-student regularization.
Model-to-model regularization is frequently used to boost a
model’s performance in tasks such as knowledge distillation
[7, 25] or generalization [9, 40]. Here, an underlying idea
is that the supervisor (i.e. teacher) be a model displaying
strong performance, namely OOD robustness. A common
approach is to use a pre-trained model trained on a large
dataset, or with a larger model architecture. Please refer to
Fig. 6b for a better understanding of this approach. How-
ever, issues exist in deploying strong teacher models for the
sDG task. First, using pre-trained teacher models contradicts
the grounding idea of single source domain generalization
(sDG). To our understanding, the goal of sDG is to devise
a generalization method that can function well in a realistic
environment where the source data is limited. Reflecting
this, the sDG setting strictly forbids the use of additional
source domains for training. In this sense, using a model
that is already trained on a much larger dataset seems to go
against this. Furthermore, if the teacher model is available
for use, a more efficient method would be to directly utilize
the teacher for inference, while its operating cost would be
much larger.

Our Method: Using a group of PEER for regularization.
Our approach to model-to-model regularization alleviates
the irony of using a pre-trained teacher model by replacing
it with a parameter-space ensemble (task model F'). Unlike
previous approaches [9, 40], the PEER does not violate the
constraints of the sDG setting. Specifically, the task model in
PEER does not use additional training data as it is the training
model itself. Second, it is of an identical architecture to the
training proxy model, hence we need not worry about ex-
cessive computation costs. Furthermore, using a task model
regulator of the identical architecture allows the proxy model
to directly update the task model via parameter-averaging,
without additional cost. On the other hand, when using a pre-
trained teacher model, updating the teacher would require
excessive costs (e.g., online distillation [22]).

More importantly, our approach to model-to-model regu-
larization is more easily applicable to real-world problems
than using a pre-trained teacher, owing to the adaptive na-
ture of the task model. In PEER, the task model is created

during the training process. Hence, the task model effort-
lessly adapts to the new dataset. This adaptivity makes PEER
applicable to any given task or dataset. On the other hand,
a teacher is a fixed model that is supposedly pre-trained on
large datasets. The fixed nature of the teacher limits its ap-
plicability, as the teacher would only work if the teacher’s
pre-trained data is similar to the new training data. For
instance, a strong digit classification [12] model will not
function well as a teacher for other classification tasks [40].

Experiment: PEER vs. Teacher In this section, pro-
vide detailed information on our experimental results re-
ported in Section 5.3.1, and emphasize the competitiveness
of PEER against using a strong teacher model for regular-
ization. Specifically, we demonstrate that a task model in
PEER serves as a more robust regulator compared to a pre-
trained teacher model. Specifically, we empirically show
that a suitable teacher model is not always available. For
analysis, we use the PACS and Digits datasets and compare
three model-to-model regularization methods (1) None: The
baseline without model-to-model regularization (2) Teacher:
Following the practice of Cha et al. [9], we selected the
pre-trained RegNetY-16GF [49] as a teacher for PACS. In
contrast, in Digits, we could not obtain a pre-trained model
fit for use as the teacher. Hence, we follow the practice of
Cha et al. [9] and use a model pre-trained on both the source
and target domains of Digits. We will later elaborate on why
the RegNetY-16GF does not apply to the Digits experiment.
(3) PEER: The task model in PEER has the same architec-
ture as the proxy model. At the beginning of training, it is
identical to the proxy model and then updated during the
training process by averaging the parameters of the proxy
model and the task model. The model is trained with random
augmentation and follows the setup stated in Section 5.

We share the results of the experiment in Table 5. Here,
the methods T+RA and P+RA refer to applying the teacher
regularization and the PEER regularization, respectively.
First, we compare the effectiveness of the two regulators
(the teacher and the task model in PEER) in reducing the
OOD target domain performance fluctuation. In Table 5,
we see that both the teacher and the task model in PEER
reduce the OOD fluctuation (measured as variance), while
the teacher displays a stronger regularization effect than the
task model. We view that this result reflects the reality that
the teacher is a fully trained model, while the task model is
updated alongside the proxy model’s training process, and
hence is a weak supervisor, at least at the beginning of train-
ing [8]. On the other hand, we see that the PEER shows
higher sDG target domain accuracy (59.42) in PACS than
using a teacher (56.50). We believe that this results from
the nature of the frozen teacher. To illustrate, the teacher
is a frozen model, and hence a model regularized by the
teacher may have been bound by the teacher’s supervision.

w Update@Update@
Re

Initialize 9 Update Reg -\ Update

Train Train
k epoch k epoch

(a) PEER Framework

Train Train
k epoch k epoch
Task

(b) Conventional Teacher-Student Framework

Figure 6. The PEER framework consists of two interacting modules: a proxy model P and the task model F'. During training, the task model
retains the knowledge of the proxy model via parameter-averaging. The conventional teacher-student framework consists of a frozen teacher
T and the task model F'. Unlike PEER, the teacher is not updated, posing limitations in improving task model generalization.

On the other hand, the PEER uses a task model that grows
alongside the proxy model, and hence less likely to share
the issues exhibited by the teacher. This pattern is repeated
in the Digits experiment at Table 5, where the teacher was
slightly better in reducing the fluctuation, while our method
with PEER showed a higher target domain accuracy.

In Table 5, we also test the case when the task model is
not updated with parameter-averaging i.e., PEER (w/o Para-
mAvg.). Instead of updating the task model via parameter-
averaging, we simply froze a snapshot of the proxy model
every k epoch and used it as the regulator. Here, we can
see that the non-averaged task model showed effectiveness
in alleviating the OOD fluctuation while limiting the target
domain accuracy.

Takeaway: Model-to-model regularization, regard-
less of the type of the regulator, can reduce the OOD
fluctuation amidst training. However, updating the
regulator (task model) is critical to enhancing the
target domain accuracy.

We find that for certain tasks, a teacher model is hard to
obtain. In other words, there is no universal model for use
as the teacher. For instance, in the PACS experiment, the
RegNetY-16GF displayed sufficient capabilities as a model-
to-model regularize. However, using the RegNetY-16GF
as the teacher for the Digits experiment was not available.
Notably, RegNetY-16GF marked low validation accuracy
in the target domain, nor was it able to guide the proxy
model. We believe that this difference is derived from the
discrepancy between the two datasets. For instance, PACS is
a collection of images without any distortion, while Digits
is a dataset solely comprised of digit images. Hence, we
view that the large gap between the pre-trained dataset of
the RegNetY-16GF and the Digit classification datasets is
responsible for this behavior. This issue can be explained
with the work of Wolpert and Macready [66], where the
authors demonstrate that there exists a trade-off between a

model’s performance on a certain task and the performance
on all remaining tasks. In contrast, the PEER applies to any
task, as it gradually adapts to the dataset using the proxy
model.

B. Discussions

B.1. Discussion on the fluctuation

We illustrate the mid-train OOD fluctuation in Figure 1.
Here, the worst-case performance of the fluctuating model
(blue) consistently falls below that of the stable model (or-
ange). This describes the issues of deploying a fluctuating
model, as the fluctuation poses challenges in early stopping
and model selection.

Arpit et al. [5] has studied a similar phenomenon within
the multi-DG literature, attributing the fluctuation to the
stochastic nature of the learning process (e.g., random seed,
order of data). While we acknowledge the role of other con-
tributing factors, we hypothesize that the mid-train OOD
fluctuation primarily stems from the model’s inability to
accumulate the knowledge learned from varying augmenta-
tions. In specific, we view that the model’s trained features
are distorted, or forgotten during training [35, 54].

B.2. Discussion on PEER as a Mutual Information
Optimization

Here, we further elaborate on the PEER. Specifically, we
elaborate on why optimizing with PEER can maximize the
mutual information (MI). To recapitulate, the PEER aims to
maximize the MI between the output feature representations
of the task model F' and the proxy model P. However, di-
rectly optimizing MI is challenging, as its exact estimation
is intractable [46]. The InfoNCE loss [45] adopts a lower
bound of MI [47] as a surrogate objective for MI optimiza-
tion:

)= 1o exp (sim(z, z1))

SO exp (sim(z, z1,))
)

I(z;27) > Iince(z; 2

where z, 2T denotes the feature representations of the
original sample z and its augmented view Z, and sim a
similarity function, such as cosine similarity or dot product.
The actual computation involves an empirical estimation
between a batch of representations of size N.

However, an issue of InfoNCE as a variational bound of
MI is that InfoNCE requires a large batch size for conver-
gence [26, 55], making it doubtful for use in small datasets
(e.g., PACS). Consequently, in our implementation, we ap-
proximate InfoNCE with the feature decorrelation loss Equa-
tion (6), based on empirical and theoretical results that show
its functional proximity [27, 56]. Contrary to InfoNCE, the
feature decorrelation converges effectively with small batch
sizes and large vector dimensions, fit for many sDG settings
with smaller datasets, or with images of large sizes.

BT (Barlow Twins), is a feature decorrelation loss [69]:

BT(Z,Z2%) = (1—My)* +X> Y ME (6)
i i g

where M refers to the empirical cross-correlation matrix
of the two batches of feature representations Z, Z+, and
) is a balancing coefficient. The first term (1 — M;;)?
aligns two representations by spurring the diagonal values
in M of (Z,Z%) to be 1. The second term >, >, ij
minimizes redundancy in the representation by encouraging
the off-diagonal values to be closer to 0.

In Table 7, we report the experimental results of replacing
our regularization objective Eq. (6) with the InfoNCE. We
find that both objectives are effective, while our default
objective showed stronger results. We believe there are
several factors behind this result (e.g., batch size, dataset

[6D.
C. Effect of PEER on the model

In this section, we further analyze the effect of PEER, namely
on the proxy model’s learned features and its loss landscape.

C.1. Effect on Learned Features (continued)

In this section, we study the effect of PEER on the learned
feature representations. We show that regularization plays
an important role in reducing the proxy model’s feature dis-
tortion during training. We compare two cases (a) Without
PEER: CKA similarity of the proxy model P at different
epochs of training and its original state before training (b)
With PEER: CKA similarity of the PEER applied proxy model
P at different epochs n (95,”)) and its original state (01(70)).
Notably, the diagonal elements in Figure 7d are brighter in
color than their counterparts (Figure 7b), which indicates
that PEER allows the proxy model to preserve its pre-trained
features. The model is trained with random augmented
MNIST data, and the feature similarity is also computed
on the MNIST data.

Next, we provide a more detailed analysis. In Figure 8,
we report the case where there is no regularization from
the task model (without PEER). Here, the diagonal values
indicate the corresponding layers between the initialization
and the trained model. We can see that as training continues
(Figure 7b), a lot of trained knowledge is distorted in the
later layers of the model. In contrast, Figure 9 shows that
when regularized with the task model (with PEER), the proxy
model preserves a lot of knowledge even in the later epochs
(Figure 7d). Yet, we do not claim that PEER allows the
proxy model to perfectly preserve its trained knowledge
amidst diverse augmentation [66]. Rather, we believe that by
regularizing the proxy model, we can ultimately benefit the
parameter-averaged task model. In the following section, we
will empirically show that the regularization indeed benefits
the parameter-averaging.

Takeaway: Model-to-model regularization with
PEER helps preserve previously learned features in
both the task model F' and the proxy model P.

C.2. Effect on Parameter-Averaging (continued)

In this section, we provide an extended analysis of how reg-
ularizing the proxy model P with the task model (i.e., PEER)
aids parameter averaging. We argue that the regularization
aids the ensembling effect by aligning different snapshots of
the proxy model Hz(,i), 9,(,j) that were trained on very different
augmented domains.

To show this, we perform a simple experiment: "Can
parameter-averaging proxy model snapshots without regular-
ization create a robust regulator?". Similar to PEER update,
we periodically save snapshots of the proxy model training
with random augmentation for every k epoch. The experi-
ment takes place in the PACS and the Digits benchmarks,
and follows the same setting stated in Section 5. For PACS,
the proxy model is trained for 200 epochs with random aug-
mented data, where £ is set as 10. In Digits, the model is
trained for 100 with k set as 10. After training, we parame-
ter average the saved snapshots to form a parameter-space
ensemble. Note that in this case, no regularization took
place.

We share the results in Table 6. As a recap, we ex-
plain the notations used in Table 6. In the table, P-ENS
refers to the parameter-space ensembles. In both PACS
and Digits, parameter-space ensembling with regulariza-
tion (PEER) outcompetes ensembling without regularization
(P-ENS w/o PEER). Notably in PACS, we observe failure
cases of parameter-space ensembling without regularization,
where the ensemble effect (i.e., gain in generalization ability)
was very marginal. As noted in Section 5.3.2, this failure
case is noteworthy since parameter averaging across differ-
ent training snapshots of models with the same initialization

Table 7. Target domain accuracy with different entropy regularization functions.

PACS Digits
Method Reg. Ob;j. A C S Avg. SVHN M-M S-D USPS Avg.
PEER (ours) BT [69] 62.66 47.40 6821 59.42 70.79 76.84 83.05 9357 81.06
PEER (ours) InfoNCE [45] 60.03 48.11 6791 58.68 6834 7580 82.69 9392 80.19
° ! Lazyerss'l'rainl;d : ¢ ¢ Lazyersz'l'ram‘ed ° ° ! Lazyersz'l'rain;d ¢ ° ! Lazyerss'l'rainl;d : ¢
(a) Epoch 30 (w/o PEER) (b) Epoch 120 (w/o PEER) (c) Epoch 30 (w/ PEER) (d) Epoch 120 (w/ PEER)

Figure 7. Layer-wise feature similarity (CKA) between the proxy model after initialization and after training with different epochs. Without

PEER regularization, the model suffers feature distortion.

has been highly successful in many prior studies [23, 28].

Generally, for a parameter-averaged model to display en-
semble effects, some conditions should be simultaneously
met [51]. (1) Share an identical initialization: models that
share an initialization backbone tend to display very low loss
barriers, showing mode connectivity. (2) Trained on same
data: Models trained on identical source data [10] tend to
display mode connectivity, while models trained on varying
data commonly do not [1]. In our case, the first condition is
already met, while the second condition may have been bro-
ken due to the varying effects of data augmentation. Drawing
from this, we hypothesize that the failure case above poten-
tially derives from violating the second condition. In specific,
we believe that the discrepancy between two very different
augmented domains breaks the alignment between the model
snapshots. In this sense, the PEER may help parameter-space
ensembling by encouraging the regularized proxy model
to align the newly augmented domain to the task model’s
source domain Section 4.1. Unfortunately, the alignment
of models in its loss landscape is a topic that has not yet
been thoroughly analyzed from a theoretical perspective,
especially for models with deep architectures. While our
empirical analysis may provide some insight, we believe
further research is required on this topic.

Takeaway: Model-to-model regularization with
PEER benefits parameter-averaging between the task
model F' and the proxy P by aligning the two in the
feature space, within a close loss basin.

D. Ablation Study
D.1. Study on Each Component

In this section, we share the results of an ablation study on
each of the components in PEER. Specifically, we study
the role of each component in (1) data augmentation, (2)
parameter-averaging of the task model regulator, and (3)
regularization by analyzing its effect on the target domain
accuracy. The results are reported in Tab. 8. The results in
Tab. 8 indicate that all three components are critical in PEER.
Especially, it is worth noting that the main source of per-
formance gain in PEER originates from data augmentation,
while the other two components (i.e., parameter averaging
and regularization) play a significant role in reliably accu-
mulating the effect of data augmentation for robustness.

D.2. Study of Hyperparameters

We explore our method’s sensitivity to hyperparameters. (w):
w is the hyperparameter used in Equation (3), which func-
tions as the balancing weight of the ERM objective and the
regularization objective Equation (2). We find that w does
not severely impact the course of training unless set to 0. We
find that during training, the two losses are automatically
tuned to match the magnitude of the w. (\): A is the hy-
perparameter used for PEER that operates as the balancing
weight of the two functions in Equation (6). We begin with
the value in the original paper [69] with A = 0.005, and an
alternate value % introduced in Tsai et al. [57] where r is the
length of a vector in ‘R (regularization head output space).
We observe that our method is resilient to the switch between
two candidate values of A although we cannot guarantee they
are optimal. (k): The augmentation reinitialization criteria
k is set as 10 for all experiments to ensure that the proxy

4 4

Layers Original

®
=
2
O3
2
o
>
)
8

Layers Original

®
=
2
O3
@
]
>
T
3

6 09
08
07
06
05
o
04
o 1 5 6

2 3 4
Layers Trained

(d) Epoch 120

2 3 a4 s
Layers Trained

(c) Epoch 90

102 3 4 s
Layers Trained

(b) Epoch 60

12 3 a4 s
Layers Trained

(a) Epoch 30

Figure 8. Layer-wise Feature Similarity (CKA) between the proxy model’s initialization and the trained proxy model (without PEER).

Without PEER regularization, the model suffers feature distortion.
os
o
os
0

Layers Trained

(d) Epoch 120

4

Layers Original

Layers Original
Layers Original

®
£
2
o
4
]
>
T
3

o 1 3

2 4
Layers Trained

(a) Epoch 30

5 6 o 1 3

2 4
Layers Trained

(b) Epoch 60

5 6 o 1 3

2 4
Layers Trained

(c) Epoch 90

5 6

Figure 9. Layer-wise Feature Similarity (CKA) between the proxy model’s initialization and the trained proxy model (with PEER). With
PEER, the model suffers less feature distortion.

Table 8. Ablation study on different components of PEER. Target domain accuracy on PACS and Digits.

PACS Digits
Method A C S Avg. SVHN M-M S-D USPS Avg.
PEER (No Aug.) 5246 42.02 5335 49.28 29.19 54.14 41.06 7833 50.68
PEER (No ParamAvg.) 57.73 46.69 6133 5525 59.99 77.26 7230 8828 74.46
PEER (No Reg.) 63.20 41.08 5625 53.51 71.87 7642 8236 9223 80.72
PEER (Ours) 62.66 47.40 68.21 5942 7079 76.84 83.05 93.57 81.06

model is sufficiently trained before switching the augmenta-
tion strategy. We find that switching k& with larger numbers
causes no problem in training, but setting them too low £ < 2
poses issues in aligning the proxy model with the task model,
undermining the fluctuation stabilization effect.

We share the experimental results of our study on hyper-
parameters in Table 9a and Table 9b. As illustrated above,
our method PEER showed resilience to changes in w and .
Both the target domain accuracy and the OOD fluctuation
were insensitive to the change in these two hyperparameters.
However, we find that £ affects the fluctuation stabilization
effect of our method, where setting k& < 1 resulted in a
slightly higher variance (4.01). This aligns with our expec-
tations, as the proxy and task model may not benefit from
the PEER regularization in just a single epoch. However,
we discover that k influences the stabilization of fluctua-
tions in our method, with k£ < 2 leading to a slightly higher
variance (4.01). This aligns with our expectations, as the
proxy and task model may not fully benefit from the PEER
regularization within a single epoch.

D.3. Study of Model Validation & Selection

Regarding model selection, we report the performance of the
final model without early stopping. Following prior works
[62], the hyperparameters were tuned using the oracle test
dataset, which has shown stability owing to the parameter-
averaging process that functions similarly to an ensemble
model. Alternatively, we can adopt an alternative validation
approach that does not involve the oracle test dataset. For in-
stance, Efthymiadis et al. [13] introduced a novel validation
approach that crafts a simulated validation set through data
augmentation.

Reflecting this, we validate the model on two validation
sets (1) Source Val. (S,): The validation set of the source
domain, (2) Crafted Val. (C,): Crafted Validation set in [13].
Test: The model is tested on the true target domain. The
results are shared in Tab. 10. The models were selected with
the best validation accuracy. We empirically reconfirm that
PEER outcompetes the baselines.

Similarly, we can tune our hyperparameters using the

Table 9. (a) Target domain accuracy and (b) fluctuation on PACS with different hyperparameters.

(a) Target domain accuracy

(b) Variance of target domain accuracy

Method Hyperparam. A C S Avg. Method Hyperparam. A C S Avg.
Hyperparameter: w Hyperparameter: w
Ours w=0.1 59.96 45.83 66.57 57.45 Ours w=0.1 219 438 445 3.67
Ours w=0.5 60.07 46.11 66.2 57.46 Ours w=0.5 205 391 482 3.59
Ours w=1.0 61.22 46.20 6579 57.74 Ours w=1.0 214 438 445 3.67
Ours w=2.0 61.20 46.08 66.00 57.56 Ours w=20 201 398 477 3.9
Ours w=4.0 59.99 4584 63.51 56.45 Ours w=4.0 244 377 475 3.65
Ours w=10.0 60.14 4588 6526 57.09 Ours w=10.0 211 414 456 3.50
Hyperparameter: A Hyperparameter: A
Ours A =0.001 60.01 47.38 664 5793 Ours A =0.001 213 365 522 3.67
Ours A =0.005 61.20 46.08 66.00 57.56 Ours A =0.005 201 398 477 359
Ours A=0.01 60.78 48.25 65.2 58.08 Ours A=0.01 199 4.04 471 358
Ours A=0.1 61.04 45.63 6636 57.68 Ours A=0.1 244 416 458 373
Hyperparameter: k Hyperparameter: k
Ours k=1 56.99 4230 6725 5551 Ours k=1 235 474 493 401
Ours k=5 62.17 4742 6352 57.70 Ours k=5 214 426 481 3.74
Ours k=10 61.20 46.08 66.00 57.76 Ours k=10 201 398 477 359
Ours k=20 63.45 47.11 6223 57.60 Ours k=20 239 385 456 3.60

source-generated validation set. Results are reported in
Tab. 11.

Takeaway: Parameter-Averaging of different mod-
els can benefit from the entropy regularization before
the merging process, which functions as an align-
ment step. We experimentally find that 2 or more
epochs are sufficient for the alignment.

D.4. Study of Model Size

In this section, we present our findings on the effect of
model size on generalization. We observe that larger model-
s/backbones generally improve target domain accuracy. To
demonstrate this, we replaced the backbones in three exper-
iments: switching from AlexNet to ResNet-18 for PACS,
and from ResNet-18 to ResNet-50 for Office-Home and
VLCS. All backbones (AlexNet, ResNet-18, ResNet-50)
were pre-trained on the same Imagenet- 1k dataset. We found
that as the backbone size increased, target domain accu-
racy improved (Table 9a), though mid-train OOD fluctuation
(variance of the target domain accuracy) increased slightly
(Table 9b). However, the gain in accuracy outweighs the
rise in variance, suggesting that larger models enhance gen-
eralization. We recommend future work to replace default
backbones (e.g., AlexNet for PACS, 3-layer MLP for Digits)
with larger ones (e.g., ResNets, ViTs).

Takeaway: Incrementing the model size signifi-
cantly enhances the generalization capability. How-
ever, the fluctuation persists regardless of the in-
crease in model size.

D.5. Additional Experiments

Additional Benchmarks We have added new experiments
on Terra Incognita (Table 12a), where PEER outperforms
baselines by a large margin. Although the gains of data
augmentation are relatively small compared to other datasets,
PEER outperforms other methods.

Additional Model Architectures We also test our method
on different model architectures (e.g., Vision Transformers).
The results are reported in Table 12b, using a ViT model
(i.e., ViT-B-16) on PACS. Results indicate that PEER works
seamlessly on other model architectures, outperforming all
baselines.

E. Implementation Detail

In this section, we report the implementation details of our
method.

E.1. Datasets

Here, we elaborate on the datasets used in our experiments.

Table 10. Test Acc. on PACS, the model selected using Validation Set.

Method Sy, — Test C, — Test
ERM 43.54 49.04
RandAugment 48.81 54.90
PEER (ours) 57.52 59.29

Table 11. Test Acc. of our method on PACS with different hyperparameter values.

(a) w
Method Hyperparam. Crafted (C'y)) Test
Ours w =0.1 78.13 57.45
Ours w =0.5 78.84 57.46
Ours w=1.0 78.50 57.74
Ours w=2.0 78.86 57.76
Ours w =10.0 78.82 57.09

PACS [38] consists of 4 domains of differing styles
(Photo, Art, Cartoon, and Sketch) with 7 classes. In de-
fault, we train our model with the Photo domain and evalu-
ate the remaining target domains. We use the train/test split
provided by the original paper [38].

Digits is comprised of 5 different digit classification
datasets, MNIST [12], SVHN [43], MNIST-M [20], SYN-
DIGIT [19], USPS [37]. In our experiment, we train our
model with the first 10,000 samples of the MNIST dataset
and assess its generalization accuracy across the remaining
four domains.

Office-Home [58] is a common benchmark for DG, but
not for sDG. The benchmark consists of 4 datasets (Real-
world, Art, Clipart, Product) with differing styles with 65
classes. We train on the Real-world domain and evaluate the
remaining domains.

VLCS [17] is also a common benchmark for DG, but not
commonly used to evaluate sDG methods. The benchmark
consists of 4 datasets (PASCAL-VOC, LabelMe, Caltech-
101, SUNO9) with differing styles with 5 classes. We train
on the PASCAL-VOC domain and test the trained model on
the remaining target domains.

For reproducibility, we provide the data used in our ex-
periments as serialized pickle files (i.e., .pkl files).

E.2. Data Augmentation

In our experiments, we used the Random Augmentation [11]
strategy as the augmentation function. The random augmen-
tation method has two hyperparameters, the augmentation
magnitude, and the number of transformations. Generally,
previous works have used random augmentation by fixing
the hyperparameters.

As outlined in Algorithm 1, we periodically reinitialize
the augmentation function by randomly selecting two hyper-

(b) k
Method Hyperparam. Crafted (C'y) Test
Ours k=1 74.71 55.51
Ours k=5 78.39 57.70
Ours k=10 78.86 57.76
Ours k=20 79.85 57.60
Ours k=30 79.24 57.77

parameters, ensuring diverse augmented samples (Figure 3).
We find that changing the random augmentation configura-
tion during training enhances generalization. While training
a single model on these varied samples can lead to feature dis-
tortion, PEER mitigates this through parameter averaging. In
Section 5, we have shown that simple random augmentation
outperforms sophisticated augmentation strategies devised
for single source domain generalization.

E.3. Baselines

Here, we provide detailed descriptions of each baseline.
ERM [32] is the baseline of training without data augmenta-
tion, followed by several augmentation-based sDG methods
that use complex adversarial schemes to generate challeng-
ing augmentations [39, 48, 65]. M-ADA [48] adopted a
Wasserstein autoencoder to regularize perturbation in the
latent space, L2D [65] takes a meta-learning approach to
generate augmented domains, while PDEN [39] and AdvST
[70] expand the training domains by progressively learning
multiple augmentation modules, each simulating different
domain shifts. Alternatively, MetaCNN [62] used a meta-
convolutional network to learn generalized meta-features
from local convolutional features. In contrast, we show that
with PEER, simple random augmentation can outperform all
the baselines.

E.4. Model Architecture

We report the details of model architectures used in our
experiments. All models were built to match the architecture
used in previous studies.

Task Model The task model architecture varies in each
experiment. For each experiment, we report the feature
extractor H and the regularization head R of the task model

Table 12. Target domain Acc. on various benchmark/architectures.

(a) Terra Incognita with Resnet-18.

(b) PACS with ViT.

Method \ L38 L43 L46 | Avg. Method ‘ A C S | Avg.
ERM 2290 15.85 2291 | 20.55 ERM 58.42 39.25 32.27 | 43.31
RandAug. | 3641 12.80 20.41 | 23.21 RandAug. | 61.10 4437 5498 | 53.48
ADA 37.33 1294 21.20 | 23.82 ADA 66.21 3570 29.77 | 43.90
PDEN 37.52 1493 20.80 | 24.42 PDEN 62.96 49.87 61.87 | 58.23
Ours 3894 15.07 29.09 | 27.70 Ours 75.06 56.78 70.22 | 67.36
Table 13. Target domain accuracy with different backbone architectures.
PACS Office-Home VLCS
Method A C S Avg. Art Clipart Product Avg. L C S Avg.
AlexNet ResNet-18 ResNet-18
RandAug [11] 54.17 47.48 65.11 5559 43.10 4547 61.67 50.01 57.58 93.18 66.56 72.44
PEER (ours) 62.66 47.40 68.21 59.42 56.81 54.23 70.84 60.63 67.00 97.73 72.56 79.10
ResNet-18 ResNet-50 ResNet-50
RandAug [11] 65.64 3827 5632 53.68 64.11 53.86 76.70 64.89 56.95 94.39 71.09 74.15
PEER (ours) 70.08 50.85 70.71 63.88 67.10 59.88 79.69 68.89 62.46 99.01 79.03 80.16
Table 14. Variance of the target domain accuracy with backbone architectures.
PACS Office-Home VLCS
Method A C S Avg. Art Clipart Product Avg. L C S Avg
AlexNet ResNet-18 ResNet-18
RandAug [11] 2.23 4.81 501 4.02 349 2.17 274 1.89 3.02 1.61 1.96 2.20
PEER (ours) 2.01 3.98 4.77 3.59 399 141 1.80 131 2.05 1.61 2.10 1.92
ResNet-18 ResNet-50 ResNet-50
RandAug [11] 6.17 7.32 644 6.64 7.17 241 455 471 345 211 2793 2.76
PEER (ours) 3.03 4.56 9.44 5.68 2.24 441 081 249 2.67 1.72 3.57 2.65
Table 15. Target domain accuracy with/without projection head R.
PACS Digits
Method Proj. Head. A C S Avg. SVHN M-M S-D USPS Avg.
PEER (ours) v 62.66 47.40 68.21 59.42 70.79 76.84 83.05 93.57 81.06
PEER (ours) X 62.76 43.26 66.00 57.34 76.34 93.07 68.96 80.36 79.68

F'. Please note that the proxy model P uses a model with an
identical architecture as the task model F'.

The task model used in the PACS experiment is AlexNet
[34], pre-trained on ImageNet [53]. The model consists of
5 convolutional layers with channels of {96, 256, 384, 384,
256}, followed by two fully-connected layers of size 4096
units. The regularization head R is a 3 layer MLP. The
output dimension of the regularization head is 1024.

The task model used in the Digits experiment is a

multi-layer CNN network (i.e. conv-pool-conv-pool-fc-fc-
softmax). The architecture consists of two 5 x 5 convolu-
tional layers, with 64 and 128 channels respectively. Each
convolutional layer is followed by a MaxPooling layer (2 x
2). The network also includes two fully connected layers
with sizes of 1024, 1024 being the final output dimension
of the feature extractor. The regularization head R is a 2
layer MLP. The output dimension of the regularization head
is 128.

Lastly, the task model used in the Office-Home and VLCS
experiment is a ResNet-18 network. The ResNet is torchvi-
sion implemented and pre-trained on the ImageNet dataset.
The regularization head R is a 3 layer MLP. The output
dimension of the regularization head is 1024.

Teacher Model for the PEER vs. Teacher Experiment
For the PEER vs. Teacher experiment, we used pre-trained
models as a teacher model. In the PACS experiment, we used
a pre-trained RegNetY-16GF model. The RegNetY-16GF
is a variant of the RegNet family, a line of foundation im-
age models introduced in Radosavovic et al. [49] for image
classification. The name of the model indicates its config-
urations, where the "Y" indicates the convolution method,
and the "16GF" represents the model’s capacity or complex-
ity. We implement the model, and its model weights using
the torchvision [15] library. For the Digits experiment, we
used a pre-trained model sharing the same architecture as the
task model. As elaborated in Appendix A, this is because a
pre-trained model fit for use in digit classification was hard
to obtain. Hence, following the practice of Cha et al. [9],
we trained the model with the source and target domains of
Digits to create an Oracle model.

E.S. Model Training

In this section, we elaborate on the details of the training pro-
cess. We explicitly state the training hyperparameters (e.g.,
number of training epochs, augmentation reinitialization cri-
teria k, learning rate, the type of the optimizer, learning rate
scheduler, and batch size). All experiments are carried out
using a single NVIDIA RTX 6000.

PACS For the PACS experiment, we set the training epochs
as 200, and the augmentation reinitialization criteria k as 10.
We tuned the number of epochs by analyzing the training
behavior of the generators. We set the learning rate as 1le — 4,
using the Adam optimizer [30]. The batch size was set
as 128. In total, the PACS experiment took roughly 101
minutes.

Digits For the Digits experiment, we set the training
epochs as 1000, and the augmentation reinitialization cri-
teria k as 10. The learning rate was tuned as 0.0001, using
the Adam optimizer. The batch size was set as 128. In total,
the Digits experiment took roughly 233 minutes.

Office-Home For the Office-Home experiment, the train-
ing epochs are set as 200, and the % as 10. The learning rate
was set as 0.0001, using the Adam optimizer. The batch size
was set as 64. In total, the Office-Home experiment took
roughly 128 minutes.

VLCS Lastly, for the VLCS experiment, we train for 200
epochs, and the k as 10. The learning rate was set as 0.0001,
using the Adam optimizer. The batch size was set as 128. In
total, the VLCS experiment took roughly 117 minutes.

E.6. Model pre-training

In this section, we report the information regarding the pre-
training process. As mentioned above, we pre-trained our
task model with the source domain before the main training
procedure. We announce the number of pre-training epochs,
the learning rate, the optimizer, the learning rate scheduler,
and the batch size.

PACS We pre-trained the AlexNet with the train data of
the Photo domain, using the train split introduced in the
original paper [38]. We pre-trained the model for 60 epochs,
with a learning rate of 0.005 using the SGD optimizer. We
further used the Step learning rate scheduler with a gamma
rate (i.e. the strength of the learning rate decay) of 0.5. The
batch size was set as 32.

Digits For the Digits experiment, we set the number of
pre-training epochs as 100, with a learning rate of 0.0001
using the Adam optimizer. The batch size was set as 256.

Office-Home We pre-trained the ResNet18 with the train
split of the Real World domain. We pre-trained the model for
100 epochs, with a learning rate of 0.0001 using the Adam
optimizer. We used no learning rate scheduler. The batch
size was set as 64.

VLCS We pre-trained the ResNet18 with the train split of
the PASCAL VOC domain. We pre-trained the model for
100 epochs, with a learning rate of 0.0001 using the Adam
optimizer. We used no learning rate scheduler. The batch
size was set as 64.

E.7. Hyperparameters

In this part, we state the hyperparameters used in our experi-
ments.

A is a balancing coefficient for Lpggg, an objective adopt-
ing the feature-decorrelation loss introduced in Zbontar et al.
[69]. We tuned X using experimental results of the original
paper and Tsai et al. [57]. In the original paper, the author
reported the optimal value of the balancing term as 0.005,
which remains consistent under varying projection dimen-
sions. We set this as a starting point for hyperparameter
tuning. We find that if \ balances the off-diagonal term (i.e.
redundancy reduction term) and the diagonal term (i.e. align-
ment term) to a similar degree, no significant differences are
observed. Furthermore, switching A to é ~ 0.0001 showed

no significant changes to the learning process. Here, d de-
notes the projection dimension of the regularization head R
(regularization head output space). While we cannot guar-
antee an optimal value for A\, we set A = 0.005 for our
experiments using PEER.

k is an augmentation reinitialization criterion that per-
forms two roles. (1) Augmentation reinitialization: For ev-
ery k epoch, the augmentation function is initialized. Here,
reinitialization refers to the change in augmentation policy.
For instance, for random augmentation, reinitialization refers
to the change in augmentation strength. Alternatively, for
augmentation techniques that utilize a learnable module [39],
the reinitialization would refer to reinitializing the param-
eters of the augmentation module. The motive behind the
reinitialization is to expose the proxy model with diverse
augmentations, (2) PEER update: For every k epoch, the
parameters of the proxy model P are used to update the task
model by averaging their parameters.

Lastly, w is a hyperparameter used in Equation (3), which
balances the ERM objective and the regularization objective
Equation (2). As studied in Appendix D.2, w does not affect
the performance of our method. We have set w as 2.0 based
upon experimental results in Table 9.

F. Reproducibility Statement

For reproducibility, we provide the source code, the data
pickle files, and the scripts used in our experiments. Please
refer to the README.md file in the supplementary materials
on how to access the datasets. We also used a fixed seed
setting, which is implemented in the source code. We also
include notebook (.ipynb) files to reproduce the figures ap-
pearing in our paper. Lastly, in Section 5.1 and Appendix E,
we thoroughly explain how our method and its experiments
are implemented.

G. Licenses for Existing Assets

In the process of performing our research, many existing
assets were used. For the implementation of the mod-
els and their weights, we have used the torchvision li-
brary [15] (BSD License). We also made sure that the
datasets used in our experiments were open-source public
datasets that do not pose license issues. Specifically, we
use data collected from multiple sources: torchvision, Dassl
(https://github.com/KaiyangZhou/Dassl.pytorch), hugging-
face (https://huggingface.co/datasets), and from the orig-
inal papers. We made sure to cite the authors for their
contribution to datasets and benchmarks. We list the li-
cense types of each dataset, in cases where we could re-
trieve them. For instance, PACS [38] uses the CC BY 4.0
license. Digits [12] uses the Creative Commons Attribution-
Share Alike 3.0 license. Office-Home [58] uses a cus-
tom license that allows non-commercial research and ed-

ucational purposes. VLCS [17] uses a custom license
(http://host.robots.ox.ac.uk/pascal/VOCY/).

