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In this supplementary material, we provide more imple-
mentation details (Sec. A), training and evaluation details
(Sec. B), analyses (Sec. C), discussion (Sec. D), and broader
impacts with ethics considerations (Sec. E), which are not
included in the main paper due to its space constraints.

A. Implementation Details
A.1. Model Architecture
Pixel-level regression. We employ the backbone of DPT-
Hybrid [20], which is composed of 12 transformer layers
and 4 fusion layers. From the global feature map XG, we
estimate parameters for camera intrinsics K using 4 convo-
lutional layers, 2 ReLU activation layers, an average pool-
ing layer, and a linear layer. From the fine-grained feature
map XF , we regress the depth map MD, visible mask MV ,
and occluder mask MO. Specficially, the depth map MD

is regressed using 3 convolutional layers, 2 ReLU activa-
tion layers, and a bilinear interpolation layer. The visible
mask MV and occluder mask MO are regressed through
2 convolutional layers, 1 ReLU activation layer, and a bi-
linear interpolation layer, respectively. The scaling factor
γ and shift factor β used for the affine transformation are
estimated via a linear layer and a SiLU activation layer.
3D point-wise regression. From the concatenated output
of the visible 3D shape SV and occluder mask MO, we
extract features using the backbone of ResNet50 [10], aug-
mented with additional 9 convolutional layers and 4 ReLU
activation layers. These extracted features serve as keys and
values in 2 cross-attention layers, where sine-cosine posi-
tional embeddings are incorporated to preserve spatial in-
formation. The cross-attention layers process queries con-
structed by the concatenation of point embeddings and text
embeddings. The point embeddings are derived from 3D
query points using 2 linear layers, while the text embed-
dings are obtained from CLIP text embeddings [19] pro-
jected by a linear layer. The outputs from the cross-attention
layers are used to regress occupancy values of the 3D query
points through 9 linear layers with skip connections and 8
Softplus activation layers.

A.2. Data Synthesis

The pseudocode for our data synthesis pipeline is outlined
in Algorithm 1.
Rendering. We utilize the 3D shape renderings provided
by ZeroShape [11]. These renderings were produced using
Blender [3] with various camera configurations. Specifi-
cally, focal lengths were varied between 30mm and 70mm
for a 35mm sensor size equivalent. Camera distances and
LookAt points were also randomized, with elevation angles
ranging from 5◦ to 65◦. These renderings, produced at a
resolution of 600 × 600 pixels, were cropped around the
center of objects and resized to 224× 224 pixels.
Object appearance diversification. We utilize Control-
Net [26] to simulate diverse visual variations in object
appearances, excluding those with high-resolution texture
maps (e.g., several objects from Objaverse [5]). To be
specific, variations are generated by a textual condition “a
[color] [material] [object]”, where [color]
and [material] are randomly selected from pre-defined
color list Lc and material list Lm, respectively. The color
list Lc includes “red”, “pink”, “orange”, “yellow”, “green”,
“blue”, “purple”, “brown”, “white”, “black”, “gray”, and
an empty string. The material list Lm contains “metal”,
“wood”, “plastic”, “ceramic”, “stone”, “rubber”, “leather”,
and an empty string. To utilize more plausible and diverse
textual conditions according to each object rendering, one
can leverage suggestions from LMMs [14].
Initial guidance. As described in Section 4.2 of the main
paper, we leveraged initial guidance to reduce silhouette
distortion of objects. To be specific, when we utilized Con-
trolNet [26], we set 20 steps in the DDIM sampler [22] and
injected the guidance at step 8. This guidance effectively
forces the conditional diffusion model to precisely adhere
to input spatial condition.
Filtering synthesized object images. While the initial
guidance substantially aids in preserving the object silhou-
ette as specified in the spatial condition, minor disparities
may still exist between the silhouettes in the synthesized
images and the original silhouettes from the renderings. To



Algorithm 1 Pseudocode of our data synthesis pipeline
Requirement: object rendererR(·), guidance perturbator P(·), random seed generator G(·),

diffusion model for object diversification DMobj(·), diffusion model for background outpainting DMbg(·)
Input: 3D objects {Oi}Ki=1, number of camera views for rendering 3D objects {Ni}Ki=1,

color list Lc, material list Lm, scene list Ls, IoU filtering threshold κ
Output: ⟨3D object, camera parameters, depth map, mask, image⟩–dataset

# C: camera parameters, D: depth map, M: mask, I: image
1: {Ci,j}K,Ni

i=1,j=1, {Di,j}K,Ni

i=1,j=1, {Mi,j}K,Ni

i=1,j=1, {Ii,j}
K,Ni

i=1,j=1 ← R({Oi}Ki=1, {Ni}Ki=1) ▷ render 3D objects

2: dataset← [ ]
3: for i = 1, 2, . . . ,K do
4: for j = 1, 2, . . . , Ni do
5: guide← P(Ii,j) ▷ perturb an initial guidance
6: while True do
7: seed← G() ▷ set random seed
8: [color], [material]← sample(Lc,Lm, seed) ▷ randomly select words
9: [object]← retrieve category(Oi) ▷ retrieve 3D object category

10: txt← “a [color] [material] [object]”
11: fg img← DMobj(Di,j , guide, txt, seed) ▷ simulate object appearance
12: if not is filtered(fg img,Mi,j , κ) then ▷ filter an image with a threshold κ

13: break
14: end if
15: end while
16: seed← G() ▷ set random seed
17: [scene]← sample(Ls, seed) ▷ randomly select a word
18: txt← “a [object] in the [scene]”
19: fg bg img← DMbg(Mi,j , fg img, txt, seed) ▷ simulate background
20: Add (Oi, Ci,j ,Di,j ,Mi,j , fg bg img) to dataset

21: end for
22: end for
23: return dataset

address this, we filter out images if the intersection-over-
union (IoU) between the synthesized and original silhou-
ettes is below 0.95. The silhouettes in the synthesized im-
ages are estimated by extracting the foreground objects in
the images. We can simply extract the foreground objects
using a threshold, as the initial guidance results in images
that have nearly-white backgrounds. Specifically, we con-
vert each synthesized RGB image to grayscale, and then
consider pixels with values between 250 and 255 as back-
ground. This straightforward process allows us to accu-
rately approximate the foreground silhouette in most cases.
Background diversification. We simulate diverse back-
grounds using an object-aware background outpainting
model [6] with a textual condition “a [object] in the
[scene]”, where [scene] is randomly selected from
pre-defined scene list Ls. As described in Section 4.3 of the
main paper, we use scene categories from [23, 27] as the
scene list Ls, which contains more than 700 categories. To
utilize more plausible and diverse textual conditions accord-
ing to each foreground object, one can leverage suggestions
from LMMs [14].

B. Training and Evaluation Details

We initialize our model with ZeroShape [11] model weights
for shared components such as DPT-Hybrid backbone [20]
and cross-attention layers. We first pre-train our pixel-level
regression components for 10 epochs, using the Adam op-
timizer [12] with a learning rate of 10−5, a batch size of
80, a weight decay of 0.05, and momentum parameters of
(0.9, 0.95). This process takes approximately 2 days on 4
RTX 3090 GPUs. Then, we train our entire model for 15
epochs, using the same optimizer with a learning rate of
10−5 for 3D point-wise regression components and 10−6

for pre-trained pixel-level regression components, a batch
size of 80, a weight decay of 0.05 and momentum parame-
ters of (0.9, 0.95). This process takes approximately 4 days
on 4 RTX 3090 GPUs.

Loss coefficients. Let Lc represent the camera intrinsics
loss, Ld the depth loss using ground-truth depth values,
Laux
d the auxiliary depth loss using depth values estimated

from Depth Anything V2 [25], Lvis
m the visible mask loss,

Locc
m the occluder mask loss, and Lo the occupancy loss.



Figure B1. Examples of Copy-Paste augmentation. In this visualization, we provide augmented training samples with occluder masks.
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w/o category priors w/ category priors

Figure C1. Effect of category priors on mask regression. Without utilizing the priors, the regression of visible and occluder masks appears
to rely on depth values. By leveraging the priors, the regression is enhanced with semantic understanding.
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Figure C2. Effect of category priors on occupancy regression. Without utilizing the priors, it is challenging to distinguish the object from
its background in the noisy visible 3D shape. By leveraging the priors, the regression is enhanced with learned 3D shape prior specific to
the category, leading to more accurate results. We highlight regions with red circles.

The loss L used for training the pixel-level regression com-
ponents is computed as follows:

L = λcLc + λdLd + λaux
d Laux

d + λvis
m Lvis

m + λocc
m Locc

m , (1)

where λc = 10, λd = λvis
m = λocc

m = 1, and λaux
d = 0.1.

The loss L′ used for training our entire model is computed
as follows:

L′ = L+ λoLo, (2)

where λo = 1. To compute the occupancy loss Lo, we
randomly sample 4096 query points at every iteration.
Copy-Paste augmentation. As shown in Figure B1, we
apply the augmentation by randomly selecting objects syn-
thesized with focal lengths similar to the corresponding
training sample. In each training iteration, we randomly
choose from 0 to 2 occluders, resize them within a scale
range of 0.4 to 0.6, and put them onto the training sample.
Category priors. We use CLIP text embeddings [19] to
learn category-specific priors with ground-truth object cate-
gories from Objaverse-LVIS [5] and ShapeNetCore.v2 [2].
Evaluation. For the quantitative evaluation of our model,
we compute Chamfer Distance (CD) and F-Score (FS). Re-
garding FS@τ , we set the distance threshold τ to 0.05. For

the evaluation, we need to convert implicit 3D shapes into
explicit meshes and then sample points from their surfaces.
To obtain explicit meshes, we apply Marching Cubes [15]
algorithm, using sampled values from a 1283 spatial grid.
Estimation of object category. To incorporate category-
specific priors, we optionally estimate the object category
of an object-centric image using a VLM [14]. We use the
following prompt: What is the salient object in this image?
The object should occupy the majority of the image. Please
provide the category name of the salient object in the for-
mat: “[object]”, where “[object]” is the specific category
name (e.g., “chair”, “bed”, “sofa”, “table”).

C. More Analyses
Category priors for regressing masks. When category
priors are not utilized, our model sometimes incorrectly
splits a single entity (e.g., a dog) into visible region (e.g.,
the dog’s body) and occluder region (e.g., the dog’s head)
based on depth values, as shown in Figure C1. We suspect
this issue arises due to the lack of semantic understanding.
To mitigate this, one may incorporate semantic priors by es-
timating object categories using a vision-language model.



“a table in the forest”“a table”

(+) Good Spatial Alignment
(−) Monotonous Background

(+) Various Background
(−) Bad Spatial Alignment

Figure D1. Observations from pre-trained conditional generative models [13, 16, 18, 26]. This phenomenon is mainly attributed to their
pre-training procedure; they were trained with depth maps which contain both foreground and background information. When we use
depth maps rendered from 3D objects, synthesizing backgrounds violates input spatial conditions.

Category priors for regressing occupancy values. Visi-
ble 3D shapes may include background geometries due to
noisy estimations of visible masks. In such cases, it is chal-
lenging to accurately regress occupancy values for the cor-
responding objects. To be specific, distinguishing a salient
object from its background is difficult, because a visible 3D
shape only contains the xyz-coordinates of each pixel (i.e.,
pixel-aligned point cloud) without any supplemental visual
cues (e.g., RGB color). To address this issue, one may lever-
age category priors for regressing the occupancy values, as
shown in Figure C2.

D. Discussion
Why synthesizing images in two steps? Our data syn-
thesis pipeline first generates foreground objects and then
outpaints their backgrounds. A more straightforward alter-
native would be to synthesize the entire image at once us-
ing conditional generative models such as ControlNet [26].
However, as shown in Figure D1, when these models are
forced to strictly follow the input spatial conditions, they
often produce monotonous backgrounds due to the lack of
background information in the conditions. On the other
hand, if we encourage the models to diversify backgrounds
using textual conditions, they tend to create more varied
backgrounds at the cost of violating the input spatial con-
ditions. To resolve these challenges, we first diversify ob-
ject appearances while adhering to the input spatial condi-
tions, and then use an object-aware background outpainting
model [6], specifically fine-tuned to prevent distortion of
object silhouettes while generating the backgrounds.
Various approaches for occlusion-aware reconstruction.
Probabilistic methods (e.g., PT43D [24]) are effective for
handling heavily occluded objects by generating multiple
plausible 3D shapes. However, there are trade-offs between
(i) accuracy and sample diversity [21], and (ii) accuracy and
efficiency [9]. In comparison, regression-based methods
can efficiently produce competitive results for small occlu-
sions, but they become sub-optimal and often impractical
when tackling highly occluded objects.

E. Broader Impacts & Ethics Considerations
Our data synthesis pipeline utilizes 3D object collections
and conditional generative models. To avoid conflicts, one
should carefully follow their usage rights, licenses and per-
missions. Also, one should be aware that generative models
might reflect biases inherent in their training data [7], and
object images in the training data might also be biased [4].
Furthermore, one should keep in mind that generative mod-
els might expose their training data [1]. To avoid data pri-
vacy issues, one can use erasing methods [8, 17] capable of
removing unwanted concepts from generative models.
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