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Depth
Point Tracker

Aria [10] DriveTrack [1] PStudio [6] Average
Estimator 3D-AJ ↑ APD ↑ TC ↓ 3D-AJ ↑ APD ↑ TC ↓ 3D-AJ ↑ APD ↑ TC ↓ 3D-AJ ↑ APD ↑ TC ↓

Oracle depth∗ CoTracker [8] 55.9 70.3 - 53.2 71.7 - 46.9 65.0 - 52.0 69.0 -

ZoeDepth [2]

Oracle tracker∗ 11.8 18.6 0.04 8.6 13.9 1.22 14.2 22.2 0.05 11.5 18.2 0.44
CoTracker [8] 9.8 15.8 0.06 7.2 12.3 1.26 10.2 17.9 0.05 9.1 15.3 0.46
LocoTrack [4] 9.6 15.7 0.05 7.5 12.3 1.33 9.9 17.3 0.06 9.0 15.1 0.48

SpatialTracker [13] 9.2 15.1 - 5.8 10.2 - 9.8 17.7 - 8.3 14.3 -
+ Seurat (Ours) CoTracker 10.9 18.8 0.01 6.6 11.6 0.27 10.9 18.8 0.01 9.6 16.4 0.10

DepthPro [3]

Oracle tracker∗ 12.2 18.9 0.13 7.0 12.0 3.72 11.0 18.0 0.16 10.1 16.3 1.34
CoTracker [8] 9.9 15.9 0.15 5.2 9.4 3.38 7.8 14.4 0.16 7.6 13.2 1.23
LocoTrack [4] 9.2 15.6 0.13 5.3 9.3 3.60 7.8 14.2 0.17 7.4 13.0 1.30

+ Seurat (Ours) CoTracker 14.6 21.9 0.01 6.9 11.8 0.27 12.7 20.7 0.01 11.4 18.1 0.10

Table A. Quantitative results on TAPVid-3D [9] minival split with meidan scaling. We combined the depth ratio from Seurat with the
metric depth predictions from ZoeDepth [2] and DepthPro [3]. Oracle tracker∗ rows use ground-truth 2D trajectories, while Oracle depth∗

row uses ground-truth depth estimation to determine the upper bound.

The supplementary materials begin with an additional
quantitative comparison in Sec. A. Next, we present an anal-
ysis of inference time in Sec. B. Sequentially, Sec. C pro-
vides additional implementation details. Finally, we discuss
the limitations of our work in Sec. D.

A. More Results

Quantitative comparison with median scaling. In Ta-
ble A, we compare our method with baselines that combine
depth estimators [2, 3] and point trackers [4, 7]. Overall, our
method outperforms the baselines, with particularly signif-
icant improvements over those using DepthPro. Addition-
ally, our method demonstrates substantially better tempo-
ral coherency (TC), further highlighting its effectiveness in
maintaining consistent depth predictions over time.

Quantitative comparison using depth metrics. In Ta-
ble B and Table C, we compare our method with other
baselines using metrics widely adopted in depth estima-
tion literature [5, 11, 12, 14]. Specifically, we employ the
absolute relative error (AbsRel) and δ1. AbsRel is calcu-
lated as |d̂ − d|/d, while δ1 is defined as the percentage
of max

(
d̂/d, d/d̂

)
< 1.25, where d̂ denotes the predicted

depth and d denotes the ground-truth depth. In Table B,
since the compared depth estimators [5, 12] predict affine-
invariant depth, we apply scale-and-shift optimization us-
ing least squares to align their predicted depth scales with
the ground truth. For Seurat that uses the trajectory of Co-
Tracker [8] as input consistently outperforms other base-
lines significantly, validating its effectiveness in depth ac-
curacy.

B. More Analysis
Analysis on inference time. Table D presents an analysis
of inference time with different numbers of query points.
We separately measure the inference time required for point
tracking and depth inference using our method. The results
show that point tracking accounts for most of the compu-
tation time, while our model is relatively efficient. We be-
lieve that future advancements in point tracking efficiency
will lead to more efficient inference for our overall pipeline.

C. More Implementation Details
During training, we sample Nq = 256 query trajectories
per batch. While we utilize trajectories from off-the-shelf
models [4, 8] during inference, we use ground-truth tra-
jectory positions and occlusion information as input dur-
ing training. Occluded positions in the input trajectories are
masked by replacing their values with the last visible po-
sition. In addition to the depth prediction head at the end
of our model, we include a head to predict the position of
occluded points, using the same loss function as in [8]. We
found this beneficial for the model to produce smooth depth
estimates for occluded points. For iterative depth refine-
ment, we consistently use 4 iterations for both training and
inference.

D. Limitations and Discussion
We have shown that the temporal evolution of depth can
be inferred from trajectories extracted by off-the-shelf point
trackers. However, our model has a limited ability to in-
fer spatial relative depth, relying instead on the monocular
depth estimation model. End-to-end training of this com-
bined pipeline could further synergize temporal and spa-
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Depth Point Tracker Aria [10] DriveTrack [1] PStudio [6] Average
Estimator AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑

DepthCrafter [5]
Oracle tracker∗ 0.344 0.564 0.141 0.811 0.053 0.981 0.179 0.785
CoTracker [8] 0.390 0.542 0.165 0.787 0.057 0.974 0.204 0.768
LocoTrack [4] 0.394 0.529 0.182 0.784 0.058 0.973 0.211 0.762

ChronoDepth [12]
Oracle tracker∗ 0.248 0.671 0.106 0.887 0.064 0.977 0.139 0.845
CoTracker [8] 0.287 0.644 0.132 0.843 0.067 0.971 0.162 0.819
LocoTrack [4] 0.290 0.648 0.166 0.811 0.068 0.971 0.175 0.810

Seurat (Ours) CoTracker [8] 0.198 0.754 0.127 0.868 0.052 0.984 0.126 0.869
+ ZoeDepth [2] LocoTrack [4] 0.223 0.732 0.161 0.838 0.056 0.981 0.147 0.850

Table B. Quantitative results of affine-invariant depth on TAPVid-3D [9] minival split. Oracle tracker∗ rows use ground-truth 2D
trajectories to determine the upper bound

Depth Point Tracker Aria [10] DriveTrack [1] PStudio [6] Average
Estimator AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑

ZoeDepth [2]
Oracle tracker∗ 0.252 0.698 0.122 0.863 0.057 0.973 0.144 0.845
CoTracker [8] 0.277 0.671 0.149 0.817 0.062 0.967 0.163 0.818
LocoTrack [4] 0.282 0.676 0.175 0.799 0.063 0.966 0.173 0.814

Seurat (Ours) CoTracker [8] 0.244 0.701 0.139 0.845 0.060 0.967 0.148 0.838
+ ZoeDepth [2] LocoTrack [4] 0.266 0.694 0.178 0.818 0.063 0.964 0.169 0.825

DepthPro [2]
Oracle tracker∗ 0.180 0.742 0.148 0.827 0.067 0.970 0.132 0.846
CoTracker [8] 0.219 0.708 0.186 0.778 0.074 0.958 0.160 0.815
LocoTrack [4] 0.214 0.720 0.214 0.760 0.076 0.955 0.168 0.812

Seurat (Ours) CoTracker [8] 0.179 0.757 0.153 0.833 0.055 0.976 0.129 0.855
+ DepthPro [3] LocoTrack [4] 0.198 0.760 0.182 0.810 0.060 0.967 0.147 0.846

Table C. Quantitative results on TAPVid-3D [9] using depth metrics with median scaling. Oracle tracker∗ rows use ground-truth 2D
trajectories to determine the upper bound.

Method 1 point 10 points 102 points 103 points 104 points

(I) Tracking 2.07 2.02 2.02 4.58 34.98
(II) Depth Inference 0.24 0.24 0.24 0.47 4.28

(III) Overall 2.31 2.26 2.26 5.05 39.26

Table D. Inference time and the number of query points. We
measure how the inference time (s) for a 24 frame video changes
as varying the number of query points. We measure the time for
point tracking (I) and depth inference with our method (II) sepa-
rately. We use CoTracker [8] as a point tracker. Inference time is
measured using Nvidia RTX 3090 GPU.

tial depth estimation in video, which we leave as future re-
search. Furthermore, our use of a sliding window approach
for processing long video sequences, while making depth
variation manageable, somewhat limits the potential bene-
fits of longer sequences. Exploring alternative approaches
to effectively leverage extended temporal information is an-
other interesting area for future research.
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