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A. Implementation Details
A.1. Training and Inference
We train our decomposition module on 68,296 pairs of
a human image and a single reference garment image at
512×384 resolutions with a fixed learning rate of 1e-5 us-
ing Adam optimizer [4]. We train for 140K iterations with
a total batch size of 32 using 4 H100 GPUs.

For the composition module, we train on 54K pairs of
a human image and multiple reference garment images at
768×576 resolution with a fixed learning rate of 1e-5 and
Adam optimizer. We train for 115K iterations with a total
batch size of 48 using 8 H100 GPUs.

During the inference, we generate images using the
DDPM [3] sampler with 50 denoising steps. We apply
classifier-free guidance (CFG) [2] with the text condition-
ing c and garment image conditioning g as follows:

ϵ̂θ(xt;g, c, t) = w · (ϵθ(xt;g, c, t)− ϵθ(xt; t)) + ϵθ(xt; t),

where ϵθ(xt; c,g, t) denotes noise prediction output with
text and garment image conditions, and ϵθ(xt; t) denotes
the unconditional noise prediction output. We use a guid-
ance scale of w = 2.0 for sampling.

A.2. Single reference Paired Dataset
To train the decomposition network, we collect pairs of a
human image and a single reference garment image from
VITON-HD, DressCode, and LAION-Fashion datasets.
Specifically, we gather 11,647 upper garments and hu-
man images from the training dataset on VITON-HD. We
also collect 13,563 upper garments, 7,151 lower garments,
27,677 dresses paired with human images from Dress-
Code. For LAION-Fashion dataset, since it consists of sin-
gle reference pairs without categorical information, we use
CLIP [6] model to classify the garment image. We define
19 different garment category texts and match the garment
image with the category text of the highest similarity score,
resulting in 5,675 bags and 1,599 shoes, 826 scarf, and 159
hats in the training data. We provide examples of collected
single reference garment and human image pairs in Fig. 1.

A.3. Dual-Condition Classifier-free Guidance
Since we have dual conditions of text condition c and gar-
ment image condition g, one can apply classifier-free guid-
ance for two conditions following [1]. Formally:

ϵ̂θ(xt;g, c, t) =wc · (ϵθ(xt;g, c, t)− ϵθ(xt;g, t))

+ wg · (ϵθ(xt;g, t)− ϵθ(xt; t))

+ ϵθ(xt; t),
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Figure 1. Examples of training data for decomposition mod-
ule. We collect pairs of a human image and a single reference
garment image from public datasets including VITON-HD, Dress-
Code, and LAION-Fashion. It consists of various garments in dif-
ferent categories, e.g., shirts, pants, shoes and bags etc.

where wc > 0 and wg > 0 denotes a guidance scale for
text conditioning and garment image conditioning, respec-
tively. Increasing wg encourages generated images to more
similar to the reference garment images, and increasing wc

guides the generated images to better align with the given
text prompt. While we adopt wg = 2.0 and wc = 2.0 for
all experiments, users can adjust the guidance values to cus-
tomize the generated images according to their preferences.

B. Synthetic Dataset Construction
In this section, we provide a detailed explanation of the data
curation process with visualizations.

B.1. Filtering Strategy
As illustrated in ??, we apply filtering on our synthetic
paired data based on the image similarity between the seg-
mented and generated garments. Among several possible
metrics, we try LPIPS, CLIP score, and DreamSim, and
empirically find that DreamSim aligns the most with hu-
man perception. As shown in Fig. 2, DreamSim can mea-
sure the similarity aligned with human perception and fil-
ters out undesirable samples while CLIP and LPIPS strug-
gle. For example, LPIPS determines that similar garments
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Figure 2. Examples of pairs filtered out by different similar-
ity metrics. We present examples of generated garment images
and their corresponding human images that were excluded based
on various image similarity metrics. Using LPIPS, garments with
complicated patterns are filtered out, and using CLIP score, in-
ner layer garments are filtered out even when they are considered
identical in human perception. In contrast, DreamSim captures the
distance between images in a way aligned with human perception,
filtering out undesirable pairs.

do not resemble each other, even if garment pairs look iden-
tical to humans, especially when they contain intricate pat-
terns or stripes. Also, CLIP fails to identify the same gar-
ments, mainly when garments are inner layers under jack-
ets, whereas DresmSim captures similarity in a way aligned
with human perception, filtering out the undesirable pairs.

We adopt DreamSim for measuring the distance between
segmented garments and generated garments. We visual-
ize human images and generated garment images based on
the image distance value in Fig. 3. With the distance value
d ≥ 0.6, we observe that the generated garment is incon-
sistent with the garment on the human image, and with
0.4 ≤ d < 0.6, fine details are not fully preserved. On
the other hand, with d < 0.4, generated garments closely
resemble the actual garments.

B.2. Synthetic Dataset Examples

We provide visualizations of the synthetic paired dataset
generated by our decomposition network in Fig. 4. The syn-
thetic dataset contains high-quality pairs of a human im-
age and multiple reference garments. The decomposition
network can generate product garment images on differ-
ent categories, even with challenging garments such as one-
shoulder sweaters (Third-row in Fig. 4).
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Figure 3. Examples of generated garment images with differ-
ent image distance values. We provide examples of generated
garment images and corresponding human images, varying the
distance values measured by DreamSim. With the distance value
d ≥ 0.4, generated garments are inconsistent with the actual gar-
ment, while for d < 0.4, the generated garments closely resemble
the actual garment.
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Figure 4. Examples of our synthetic paired data. We visualize
our synthetic pairs of a human image and multiple garment im-
ages. Our decomposition module generates high-quality garment
images in product view on different categories including shirts,
pants, shoes and bags.
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Figure 5. Examples of synthetic paired data generated by the
decomposition module trained on MVImgNet [9]. We show the
potential extension of our decomposition module to the general
domain. Given an image containing common objects such as cups,
chairs, and broccoli, the decomposition module generates each ob-
ject in a different view, constructing paired data. Reference images
are obtained from COCO [5].

C. Applications of Decomposition module
In this section, we explore the potential applications of our
decomposition module, including applying it on the general
domain and using it as a multi-view image generator.

C.1. Synthetic Paired Data on General Domain
Recent work [8] demonstrates remarkable performance in
diverse image generation tasks by leveraging large-scale
paired data, underscoring the importance of paired datasets
in image generation. We have demonstrated our decompo-
sition module’s capability to generate high-quality paired
data in the fashion domain, and we further explore its po-
tential for applicability to the general domain. Specifically,
we train the decomposition network on MVImgNet [9]
dataset, which contains large-scale object images in multi-
view from 238 classes. As shown in Fig. 5, the network
decomposes each object in different views from reference
images, demonstrating its potential for broader applications
and inspiring future research.

C.2. Multi-view Image Generator
We show that the decomposition network can be used as
a multi-view image generator. By utilizing the decompo-
sition network with segmented single-subject images, one
can generate different views of the reference subject im-
ages while faithfully preserving their identity. In Fig. 6,
we present multi-view images generated by the decompo-
sition module using subject images obtained from Dream-
Booth [7]. These multi-view images can be utilized for var-
ious applications, such as data augmentation.
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Figure 6. Examples of generated subjects in multi-view by the
decomposition module trained on MVImgNet. The decomposi-
tion module can serve as a multi-view generator for single-subject
images. Subject images are from DreamBooth [7].

D. Additional Qualitative Results
We provide more visualizations of human images generated
by BootComp. We show more qualitative comparisons of
BootComp with baselines in Fig. 8. We also showcase addi-
tional human images with multiple reference garments gen-
erated by BootComp in Fig. 9 and more visualizations of
application results, including controllable generation, styl-
ization, and personalized generation in Fig. 10.

E. Limitations
While BootComp is capable of generating human images
with various categories of garments, it sometimes struggles
to place hats on humans naturally. This arises from the lim-
ited number of hat images in the training data. One can ad-
dress this by scaling up the paired data simply using our
data generation pipeline. Also, BootComp fails to preserve
tiny details such as letters, which is attributed to the limita-
tions of the backbone model, SDXL. This can be relieved by
replacing backbone to other diffusion models trained with
better VAE encoders with larger number of channels.
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Figure 7. Limitations of BootComp. BootComp struggles on nat-
urally dressing hats and preserving tiny details like letters.
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Figure 8. More qualitative comparisons. BootComp generates realistic human images wearing multiple reference garments, faithfully
preserving fine-details of each garment, while baselines often generate inconsistent garment images and blend reference garments.
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Figure 9. Generated human images by BootComp. BootComp can realistically dress humans with diverse categories of garments, in-
cluding bags and shoes, which are not available for previous approaches. BootComp is capable of dressing complex combinations such as
jackets and inner layers (First row, second column) and less common garments such as overalls (Second row, third column). Also, Boot-
Comp can address challenging garments such as asymmetric-length garments and sandals (Third row, second column), and garments with
unique details (Last row, third column).



References References ReferencesOutput Output Output

+“…
 in front of 
the 
Eiffel Tower”

+“… 
in front of
 a snowy 
mountain”

Figure 10. Application results by BootComp. BootComp is capable of generating human images with various conditions. By using
structural conditions, it can control poses in the generated images. With text prompts, BootComp can manipulate the backgrounds of
images. Additionally, it supports personalized generation through virtual try-on and face-based generations.
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