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Supplementary Material

S1. Overview

In this supplementary material, we provide additional imple-
mentation details of DeepDeblurRF-P and DeepDeblurRF-G,
details on generating the BlurRF-Synth dataset, and addi-
tional experimental results. Specifically, we provide:

• Additional implementation details
• Blender rendering configurations
• Blender license information
• Ablation study on DeepDeblurRF-P
• Description for supplementary video
• Additional comparison results

S2. Additional Implementation Details

With iteration number of N = 5, DeepDeblurRF consists
of one single-image deblurring network and four RF-guided
deblurring networks for each blur type: camera motion blur
and defocus blur. These networks are denoted as Ds, D1

g , D2
g ,

D3
g, and D4

g, respectively. The deblurred outputs from each
network are used as inputs in each radiance field construction
step to train Vi∈{1,...,5}, respectively.

DeepDeblurRF-P and DeepDeblurRF-G share only the
single-image deblurring network, Ds, which adopts the net-
work of NAFNet-32 [1]. The RF-guided deblurring networks
are trained independently for each of DeepDeblurRF-P and
DeepDeblurRF-G to fully reflect the rendering results of
Plenoxels [2] and 3D Gaussian splatting (3DGS) [3]. For
camera motion blur, Ds is trained for 223 epochs with a
batch size of 32, while for defocus blur, it is trained for 53
epochs with the same batch size. The RF-guided deblurring
networks use NAFNet-64 with a batch size of 32 and are
trained separately for DeepDeblurRF-P and DeepDeblurRF-
G.

S2.1. DeepDeblurRF-P
For RF-guided deblurring networks, D1

g, D2
g, D3

g, and D4
g

are trained for 25, 53, 43, and 20 epochs for camera motion
blur, and 25, 14, 25, and 11 epochs for defocus blur. The
networks D1

g, D2
g, and D3

g use the PSNR loss [1], while
D4

g additionally incorporates the perceptual loss from Real-
ESRGAN [12] to enhance deblurring quality.

For radiance field construction, we adopt the forward-
facing experimental setting of Plenoxels [2]. They begin
with a voxel resolution of 256×256×128, with upsampling
performed every 38,400 steps, progressing to resolutions of
512 × 512 × 128 and finally reaching 1408 × 1156 × 128.
In our implementation, for V1 to V4, we adjust this scheme
to start at a lower resolution of 128× 128× 128, increasing

to 256× 256× 256, and then 512× 512× 256. This adjust-
ment accelerates training while progressively capturing finer
details. However, for the final radiance field construction
step, V5, we revert to the original settings to achieve optimal
novel-view synthesis performance.

We utilize the default settings for the remaining hyper-
parameters. Specifically, learning rates are set to 3 × 101

for sigma and 1× 10−2 for spherical harmonics, with total
variation regularization values of 5× 10−4 for density and
5×10−3 for spherical harmonics, along with a sparsity regu-
larization of 1×10−12. We optimize V1 for 51,200 iterations
and V2 for 76,800 iterations, each with a batch size of 5k
rays. For V3, V4, and V5, we extend optimization to 102,400
iterations with the same batch size.

S2.2. DeepDeblurRF-G

The RF-guided deblurring networks, D1
g, D2

g, D3
g, and D4

g,
are trained for 53, 254, 254 and 33 epochs for camera motion
blur, and 42, 42, 50 and 11 epochs for defocus blur. As with
DeepDeblurRF-P, D1

g, D2
g, and D3

g use the PSNR loss [1],
while D4

g also incorporates the perceptual loss from Real-
ESRGAN [12] to enhance deblurring quality.

For the radiance field construction step of DeepDeblurRF-
G, we employ the training scheme of the 3DGS [3]. We
use the Adam optimizer and set the learning rate for the
position of 3D Gaussians to 1.6×10−4, the pruning threshold
to 5 × 10−3, and the densification threshold to 2 × 10−4.
However, since 3DGS assumes clean input images, adopting
its training scheme in our framework may result in sparse
and incomplete Gaussian point clouds. To address this, we
incorporate the sparse point cloud compensation strategy of
Deblur-GS [4] that performs depth-based pruning and adds
extra Gaussian points. We use the hyperparameters proposed
by Deblur-GS for the compensation strategy. We refer the
readers to [4] for more details on the compensation strategy.
We optimize V1 to V4 for 10,000 iterations each, and then
extend the optimization for V5 to 20,000 iterations to capture
finer scene details.

S2.3. Training Details

The deblurring networks are sequentially trained: train the
initial deblurring network, construct RFs, render guidance
images, and train the first RF-guided deblurring network.
We present the pseudocode for the entire training procedure
of DeepDeblurRF to provide a clearer understanding of the
overall process.



Algorithm 1 DeepDeblurRF Training

Require: A training dataset containing N scenes H = {H1, H2, . . . ,HN}. Each scene Hh consists of M blurred images
B = {B1, B2, . . . , BM} and their corresponding sharp images S = {S1, S2, . . . , SM}.

Ensure: A set of trained deblurring network weights:
- W0: Initial deblurring network weight.
- {W1,W2, . . . ,WT }: RF-guided deblurring network weights.

1: Initialize:
2: Initialize initial deblurring network weight W0

3: Initialize RF-guided deblurring network weights {W1,W2, . . . ,WT }
4: Initialize deblurred images Dh,i ← ∅ for all h, i
5: Initial deblurring network training:
6: for each scene h = 1 to N do
7: for i = 1 to M do
8: Dh,i ← Deblur(Bh,i,W0) ▷ Deblur using W0

9: Compute loss L0 using Sh,i and Dh,i

10: Update W0 using optimizer with ∇L0 ▷ Train initial deblurring network
11: end for
12: end for
13: Radiance Field (RF) & RF-guided Deblurring Network Training:
14: for t = 1 to T do ▷ Iterate through each RF-guided deblurring network
15: for each scene h = 1 to N do
16: if t = 1 then ▷ Initial deblurring
17: Dh,1, Dh,2, . . . , Dh,M ← Deblur(Bh,W0)
18: else ▷ RF-guided deblurring
19: Dh,1, Dh,2, . . . , Dh,M ← Deblur(Bh, Rh,Wt−1)
20: end if
21: Obtain camera poses Ph using COLMAP from Dh ▷ Estimate camera poses for RF training
22: Train radiance field RFh using Dh and Ph

23: Render images Rh,1, Rh,2, . . . , Rh,M from RFh at input view poses
24: end for
25: for each scene h = 1 to N do ▷ Train the t-th RF-guided deblurring network
26: Dh ← Deblur(Bh, Rh,Wt)
27: Compute loss Lt using Sh and Dh

28: Update Wt using optimizer with∇Lt

29: end for
30: end for
31: Final deblurring network weights:
32: return W0 and {W1,W2, . . . ,WT } ▷ Return trained network weights for deblurring and novel view synthesis

S3. Details on the BlurRF-Synth Dataset

In this section, we describe the details of the Blender render-
ing configurations and the licensing of Blender models used
to generate the BlurRF-Synth dataset.

S3.1. Blender Rendering Configurations

We modify the Blender script provided by Deblur-NeRF [7]
to render sharp and blurred images. To accurately model the
real-world blur formation process, we configure the color
management settings to use the ‘RAW’ color profile to ren-
der images in the linear sRGB space. Additionally, we set
the Look setting to ‘None’ to avoid any contrast-related

transformations, and compositing is disabled in the output
settings to avoid non-linear transformations. We manually
sample 29 camera poses for each model to capture different
viewpoints, and for the test set, we include 5 additional poses
to evaluate novel-view synthesis quality.

Examples are shown in Fig. S1. In each row, the left im-
ages show the 34 sampled camera poses, with blue lines
representing the defined camera paths, white dots indicating
the sampled camera positions, and orange numbers labeling
some of the poses. The rectangle in each left image rep-
resents the current camera, corresponding to the rectangle
framing the scene in the right image. The image within the
rectangle on the right shows the view rendered from this
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Figure S1. Examples of Blender models used for synthesizing the
test sets of BlurRF-Synth.

camera position. The darker appearance is due to the RAW
color profile used for rendering.
Camera motion blur To simulate camera shakes, we take
each of the 29 original camera poses as the starting cam-
era position (P0) and apply a perturbation to determine the
final camera position (P3) during the exposure time. This
perturbation is applied along a random direction vector (D),
with its magnitude constrained by predefined limits adjusted
according to the scene’s scale. We then interpolate between
these camera positions using a Bézier curve to create smooth
camera motion. The Bézier curve is defined as:

B(t) = (1− t)3P0+3(1− t)2tP1+3(1− t)t2P2+ t3P3,

where P0 represents the original camera pose, P3 is the
perturbed position, and P1 and P2 are control points that
shape the camera motion trajectory. The control points P1

and P2 are computed based on a normal direction to the
vector D, which represents the camera’s movement direction.
Specifically, we calculate a perpendicular normal vector to
D and adjust the depth of P1 and P2 independently. These
depths are randomized within predefined ranges proportional
to the scene scale, introducing variation in the curve. This
ensures that each control point depth varies, resulting in
more realistic camera movements.

Using this method, we render 51 sharp images per cam-
era pose. The 26th image, the temporally central frame, is
used as the ground truth sharp image, while all 51 frames
are combined to generate realistic blurred images follow-
ing the RSBlur [10] pipeline. The full Blender script will
be released to ensure reproducibility and to enable further
experimentation.
Defocus blur To generate realistic defocus blur, we ad-
just the camera’s depth of field (DoF) settings for each of
the 29 camera poses. By varying the camera’s aperture and
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Figure S2. Example view of scenes ’Classroom 1’ and ’Classroom
2’. These scenes are rendered from the same Blender model but use
different sets of camera poses.

focal distance, we simulate different levels of defocus blur.
Specifically, we enable the depth of field effect and adjust the
aperture using the f-stop value to control the amount of
blur. A lower f-stop value opens the aperture wider, allow-
ing more light and creating a shallower depth of field, which
increases the blur effect. Conversely, a higher f-stop value
narrows the aperture, resulting in a deeper depth of field and
reducing the blur. For each camera pose, we randomly ad-
just the focal distance within a predefined range to simulate
varying degrees of defocus blur across frames.

Additionally, to capture diverse bokeh shapes, we ran-
domly set the number of aperture blades between 7 and 9
for each scene, affecting the shape of the bokeh effect in
the rendered images. Unlike camera motion blur synthesis,
which combines multiple frames, defocus blur synthesis ren-
ders a single image per camera pose by directly adjusting
the DoF settings to generate blurred images. After rendering
in linear sRGB space, we apply the RSBlur [10] pipeline to
introduce shot noise and sensor read noise, as done in the
camera motion blur process. The full Blender script will also
be released to ensure reproducibility and to enable further
experimentation.

S3.2. Blender Asset Licenses

We synthetically generated our dataset using Blender models.
Specifically, we collected 95 models from Blendswap1 un-
der Creative Commons licenses and sourced an additional 5
models from the synthetic dataset used in Deblur-NeRF [7].
Tab. S4 and Tab. S5 provide detailed information on each
model, including the author, license type, and download link.
Moreover, we specify whether each model was used to simu-
late camera motion blur or defocus blur, as well as whether it
was included in the training set or the test set. To distinguish
between scenes generated from the same model but with dif-
ferent sets of camera poses, we append numerical identifiers
to the scene names. Examples are shown in Fig. S2.

1blendswap.com/

blendswap.com/


BlurRF-Real Deblur-NeRF [7] Deblur-NeRF [7]
(Camera Motion Blur) (Camera Motion Blur) (Defocus Blur) Computation

Model PSNR (↑) SSIM (↑) LPIPS (↓) PSNR (↑) SSIM (↑) LPIPS (↓) PSNR (↑) SSIM (↑) LPIPS (↓) Time (Hr.)
MLP

Deblur-NeRF [7] 21.31 0.3845 0.5512 25.62 0.7645 0.1825 23.34 0.7191 0.1191 31.33
BAD-NeRF [11] 17.75 0.2279 0.7529 17.37 0.3044 0.5806 - - - 24.68
DP-NeRF [5] 21.17 0.3789 0.5378 25.91 0.7549 0.1638 23.60 0.7278 0.1072 30.00*

Voxel grid
ExBluRF [6] 18.93 0.3137 0.6702 22.97 0.6787 0.2222 - - - 8.92
PDRF-10 [8] 21.37 0.3774 0.5759 25.87 0.7685 0.2049 23.73 0.7356 0.1084 4.26
DeepDeblurRF-P 24.20 0.4833 0.4751 25.96 0.7922 0.1521 23.49 0.7479 0.1067 1.14

3D Gaussians
Deblur-GS [4] 20.20 0.3461 0.5026 25.53 0.7870 0.1234 23.42 0.7367 0.1146 0.33
BAGS [9] 22.87 0.4333 0.4883 26.18 0.7985 0.1185 23.50 0.7469 0.1040 1.25
DeepDeblurRF-G 24.59 0.4895 0.4495 26.82 0.8141 0.1182 23.82 0.7484 0.0951 0.28

Table S1. Quantitative comparison of novel-view synthesis on BlurRF-Real and real-world scenes from Deblur-NeRF [7]. We highlight
the best metrics and the second best metrics . As discussed in Sec. 5, training times were measured using the BlurRF-Synth camera

motion blur test set. Note that due to its high memory demands, DP-NeRF [5] was trained with two GPUs, while all other models were
trained on a single NVIDIA TITAN RTX GPU.

# Iter. Camera motion Defocus
PSNR SSIM LPIPS PSNR SSIM LPIPS

N = 1 28.04 0.8068 0.1989 30.51 0.8660 0.1711
N = 2 28.99 0.8400 0.1697 31.03 0.8751 0.1538
N = 3 29.47 0.8576 0.1405 32.03 0.8964 0.1278
N = 4 29.75 0.8657 0.1247 32.31 0.9025 0.1055
N = 5 29.81 0.8668 0.1142 32.51 0.9058 0.0961
N = 6 29.85 0.8690 0.1124 32.74 0.9077 0.0947

Table S2. Quantitative results of ablation study on the number of
iterations N for the test sets of BlurRF-Synth.

S4. Additional Experimental Results
S4.1. Ablation Study on DeepDeblurRF-P
In Sec. 5, we presented both quantitative and qualitative re-
sults of the ablation study on the number of iterations N
for DeepDeblurRF-G. In this section, we extend the same
ablation study to DeepDeblurRF-P. Tab. S2 shows that the
novel-view synthesis performance of DeepDeblurRF-P im-
proves as N increases. While our models generally achieve
optimal performance at N = 5, we observed that in some
scenes, both DeepDeblurRF-P and DeepDeblurRF-G con-
verge earlier, around N = 3 or N = 4. This suggests that
although N = 5 is a robust setting for most cases, fewer
iterations can achieve comparable results in specific scenes,
as illustrated in Fig. S3.

S4.2. Description for Supplementary Video
Our supplementary video presents novel-view synthesis re-
sults across various datasets, including comparisons with
other models. For ray-based methods [5, 8], we used the of-
ficial code provided for video generation. For 3D Gaussians-
based methods [4, 9], which did not provide such code, we
generated novel views by randomly sampling and interpolat-
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Figure S3. Qualitative results of ablation study on the number of
iterations N for real-world scenes of the Deblur-NeRF [7].

ing camera poses from the training views.

DeepDeblurRF performs high-quality novel-view synthe-
sis on the BlurRF-Synth dataset and real-world datasets of
the Deblur-NeRF [7], both of which contain scenes with
camera motion blur and defocus blur.

On the BlurRF-Real dataset, which contains camera mo-
tion blur scenes under challenging low-light conditions,
DeepDeblurRF also outperforms other methods, which pro-
duce noisy or blurred results.

Furthermore, other methods fail to effectively remove blur
in the BlurRF-SB dataset, where all training views contain
camera motion blur in the same direction but with varying
intensities. This is due to the reliance of previous approaches
on the assumption that input blurred images contain comple-
mentary information from different blur directions, which
does not hold in the BlurRF-SB dataset. In contrast, our
methods produce sharp and clear novel views, demonstrat-
ing the advantage of leveraging prior knowledge on sharp
images obtained from pre-trained deblurring networks.



S4.3. Additional Comparison Results
We report experimental results on the benchmark Deblur-
NeRF [7] datasets. Notably, benchmark datasets do not re-
flect challenging low-light conditions where blur often oc-
curs. Instead, they contain minimal noises, thus are highly
favorable to previous methods that rely on linear blur mod-
els. For a comprehensive evaluation, we retrained our model
with minimal noise. The results are reported in Tab. S1 and
Tab. S3. As discussed in Sec. 5, the blur-free reference im-
ages for the real-world datasets are not fully consistent with
the training views due to differences in calibration and ex-
posure, making precise quantitative evaluation challenging.
Therefore, we report the quantitative results in the supple-
mentary material for further reference.

Tab. S1 presents the results, evaluated using full-
reference quality metrics. On the BlurRF-Real dataset, both
DeepDeblurRF-P and DeepDeblurRF-G outperform existing
models across all metrics. This is further highlighted in the
qualitative results shown in Fig. S4, where other methods
struggle with real-world non-linear artifacts, such as noise in
low-light conditions, while our models perform high-quality
novel-view synthesis.

Similarly, on the Deblur-NeRF [7] datasets, our models
exhibit superior performance with significantly shorter com-
putation times. For camera motion blur, DeepDeblurRF-G
achieves superior performance in both synthetic and real-
world scenes, while requiring less computation time. For
defocus blur, DeepDeblurRF-G demonstrates a notable ad-
vantage in the LPIPS metric, reflecting its superior percep-
tual quality. DeepDeblurRF-P also surpasses other MLP and
Voxel grid-based models in both SSIM and LPIPS on real-
world scenes, while also maintaining the fastest training time.
These trends are also visible in the qualitative results shown
in Fig. S5, Fig. S6, and Fig. S7. These figures also include
additional qualitative results both on the benchmark syn-
thetic dataset [7] and BlurRF-Synth dataset, omitted from
the main paper due to space limits.

Additionally, we report quantitative evaluation results
on test sets of the BlurRF-Synth dataset, which include
both camera motion blur and defocus blur. Tab. S6 and
Tab. S7 present the results for each type of blur, respec-
tively. The tables include PSNR, SSIM, and LPIPS metrics
for all models across each scene. Notably, DeepDeblurRF-P
and DeepDeblurRF-G consistently outperform other models
across most quantitative metrics.
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Table S4. Blender license information with dataset usage

No. Scene Author License Link Camera Motion Defocus

Train Test Train Test

1 airplane fabien CC-BY-3.0 https://blendswap.com/blend/15016 O O
2 antique b2przemo CC-BY-3.0 https://blendswap.com/blend/18909 O O
3 applepear strapazie CC-BY-3.0 https://blendswap.com/blend/19210 O O
4 arts singroff CC-BY-0 https://blendswap.com/blend/25860 O
5 basketball CGMasters CC-BY-3.0 https://blendswap.com/blend/14758 O O
6 blenderroom 1 Warcos CC-BY-SA-3.0 https://blendswap.com/blend/20975 O O
7 blenderroom 2 Warcos CC-BY-SA-3.0 https://blendswap.com/blend/20975 O O
8 cafeteria 1 Dennis Mg CC-BY-0 https://blendswap.com/blend/31447 O
9 cafeteria 2 Dennis Mg CC-BY-0 https://blendswap.com/blend/31447 O

10 castle 1 3dfiles CC-BY-0 https://blendswap.com/blend/31236 O
11 castle 2 3dfiles CC-BY-0 https://blendswap.com/blend/31236 O
12 castle 3 3dfiles CC-BY-0 https://blendswap.com/blend/31236 O
13 classroom 1 SwastikDas CC-BY-3.0 https://blendswap.com/blend/21410 O O
14 classroom 2 SwastikDas CC-BY-3.0 https://blendswap.com/blend/21410 O O
15 deer Spine69 CC-BY-0 https://blendswap.com/blend/26863 O
16 desert nacimus CC-BY-0 https://blendswap.com/blend/26925 O O
17 designtable gandre82 CC-BY-NC https://blendswap.com/blend/26159 O O
18 diningroom 1 MaTTeSr CC-BY-3.0 https://blendswap.com/blend/18762 O O
19 diningroom 2 MaTTeSr CC-BY-3.0 https://blendswap.com/blend/18762 O
20 drum bryanajones CC-BY-3.0 https://blendswap.com/blend/13383 O O
21 entrance oldtimer CC-BY-SA-3.0 https://blendswap.com/blend/13545 O O
22 fireplace tkobyl2 CC-BY-SA https://blendswap.com/blend/23941 O
23 grasstool 1 kevinjohnwimberly CC-BY-0 https://blendswap.com/blend/31101 O
24 grasstool 2 kevinjohnwimberly CC-BY-0 https://blendswap.com/blend/31101 O
25 homelibrary 1 ThePefDispenser CC-BY-3.0 https://blendswap.com/blend/19984 O O
26 homelibrary 2 ThePefDispenser CC-BY-3.0 https://blendswap.com/blend/19984 O O
27 hotdog erickfree CC-BY-0 https://blendswap.com/blend/23962 O O
28 hotliving 1 oldtimer CC-BY-SA-3.0 https://blendswap.com/blend/13707 O O
29 hotliving 2 oldtimer CC-BY-SA-3.0 https://blendswap.com/blend/13707 O O
30 industry 1 levigibson CC-BY-0 https://blendswap.com/blend/26527 O O
31 industry 2 levigibson CC-BY-0 https://blendswap.com/blend/26527 O
32 industry 3 levigibson CC-BY-0 https://blendswap.com/blend/26527 O
33 interior oldtimer CC-BY-3.0 https://blendswap.com/blend/11624 O
34 japan red0004 CC-BY-0 https://blendswap.com/blend/23230 O O
35 kitchen Gorion CC-BY-SA-3.0 https://blendswap.com/blend/10286 O O
36 kitchenrail Sambor CC-BY-0 https://blendswap.com/blend/31127 O
37 LG AzuritHD CC-BY-0 https://blendswap.com/blend/24405 O
38 livingroom Rendars CC-BY-0 https://blendswap.com/blend/17574 O O
39 lotus Britdawgmasterfunk CC-BY-0 https://blendswap.com/blend/31343 O O
40 market 1 tokabilitor CC-BY-0 https://blendswap.com/blend/8498 O
41 market 2 tokabilitor CC-BY-0 https://blendswap.com/blend/8498 O
42 markethouse UncleAmi CC-BY-0 https://blendswap.com/blend/30651 O O
43 military holmen CC-BY-SA-3.0 https://blendswap.com/blend/20349 O O
44 office exedesign CC-BY-3.0 https://blendswap.com/blend/5402 O O
45 oilvinegar oldtimer CC-BY-3.0 https://blendswap.com/blend/9549 O O
46 oldcar thecali CC-BY-0 https://blendswap.com/blend/13575 O O
47 oldphone oldtimer CC-BY-SA-3.0 https://blendswap.com/blend/12507 O O
48 oldroom oldtimer CC-BY-SA-3.0 https://blendswap.com/blend/12562 O O
49 oldtruck oldtimer CC-BY-3.0 https://blendswap.com/blend/10372 O O
50 payphone Ndakasha CC-BY-0 https://blendswap.com/blend/16649 O O
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Table S5. Blender license information with dataset usage

No. Scene Author License Link Camera Motion Defocus

Train Test Train Test

51 pinetree Usch18 CC-BY-0 https://blendswap.com/blend/22602 O
52 plantpot MZiemys CC-BY-1.0 https://blendswap.com/blend/17472 O O
53 portion aXel CC-BY-3.0 https://blendswap.com/blend/8909 O O
54 prison 1 shadows555 CC-BY-0 https://blendswap.com/blend/13423 O O
55 prison 2 shadows555 CC-BY-0 https://blendswap.com/blend/13423 O O
56 readingroom oldtimer CC-BY-3.0 https://blendswap.com/blend/11431 O O
57 redroom 1 Wig42 CC-BY-3.0 https://blendswap.com/blend/13491 O O
58 redroom 2 Wig42 CC-BY-3.0 https://blendswap.com/blend/13491 O O
59 roots AceTop CC-BY-0 https://blendswap.com/blend/24472 O
60 snow Kaluura CC-BY-3.0 https://blendswap.com/blend/7892 O O
61 snowroom akshdlfps CC-BY-0 https://blendswap.com/blend/25057 O
62 Stone rajatg8008 CC-BY-0 https://blendswap.com/blend/22490 O O
63 sunnyroom ermmus CC-BY-3.0 https://blendswap.com/blend/6468 O O
64 suv FA1RYDUST CC-BY-0 https://blendswap.com/blend/29248 O O
65 threejugs BigBadCat CC-BY-0 https://blendswap.com/blend/23234 O
66 towelrail gianmariaveronese CC-BY-3.0 https://blendswap.com/blend/16186 O O
67 toyfruit darkst0ne CC-BY-SA-3.0 https://blendswap.com/blend/17890 O O
68 Valley 1 ShadowCrystol CC-BY-0 https://blendswap.com/blend/27325 O
69 Valley 2 ShadowCrystol CC-BY-0 https://blendswap.com/blend/27325 O
70 woodfence gianmariaveronese CC-BY-3.0 https://blendswap.com/blend/16218 O
71 aloe dbar CC-BY-0 https://blendswap.com/blend/29333 O
72 axe Mukhammad CC-BY-0 https://blendswap.com/blend/28884 O
73 brownbathroom imperfection.png CC-BY-0 https://blendswap.com/blend/29184 O
74 cactus Prokster CC-BY-0 https://blendswap.com/blend/27983 O
75 champagne Teleport3d CC-BY-3.0 https://blendswap.com/blend/28262 O
76 chocolate Bagoule CC-BY-0 https://blendswap.com/blend/30805 O
77 computer Supper800 CC-BY-3.0 https://blendswap.com/blend/28505 O
78 hobbyroom muhuk CC-BY-0 https://blendswap.com/blend/28537 O
79 junglegym DoiMoi CC-BY-0 https://blendswap.com/blend/30371 O
80 kitcheninterior Mukhammad CC-BY-3.0 https://blendswap.com/blend/28822 O
81 oldoak manoh CC-BY-0 https://blendswap.com/blend/19222 O
82 range Ginibird CC-BY-3.0 https://blendswap.com/blend/29247 O
83 recyclebin jamesstar CC-BY-0 https://blendswap.com/blend/30905 O
84 salon carmule CC-BY-0 https://blendswap.com/blend/30615 O
85 samosas Hope CC-BY-0 https://blendswap.com/blend/28022 O
86 scissors salimrached CC-BY-0 https://blendswap.com/blend/27712 O
87 shaving narmoo CC-BY-3.0 https://blendswap.com/blend/30020 O
88 teaset SavageIndie CC-BY-3.0 https://blendswap.com/blend/28729 O
89 trophies ScreamingOrange CC-BY-0 https://blendswap.com/blend/27622 O
90 victorianoffice Teleport3d CC-BY-3.0 https://blendswap.com/blend/28382 O
91 garage Bagoule CC-BY-0 https://blendswap.com/blend/31126 O
92 key raven0246 CC-BY-NC-3.0 https://blendswap.com/blend/20439 O
93 paintingroom celoaz CC-BY-1.0 https://blendswap.com/blend/17967 O
94 shotgun Britdawgmasterfunk CC-BY-0 https://blendswap.com/blend/30712 O
95 swimmingpool BlenderByte CC-BY-3.0 https://blendswap.com/blend/15015 O
96 cozyroom Deblur-NeRF [7] O O
97 factory Deblur-NeRF [7] O O
98 pool Deblur-NeRF [7] O O
99 tanabata Deblur-NeRF [7] O O
100 wine Deblur-NeRF [7] O O

Total Blender Models: 100

Camera Motion Blur: Train (65), Test (10)

Defocus Blur: Train (65), Test (10)
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Table S6. Quantitative results of novel-view synthesis on the camera motion blur test set of BlurRF-Synth. We highlight the best metrics
and the second best metrics .

Model Cozyroom Factory Pool Tanabata Wine
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Deblur-NeRF [7] 27.39 0.8577 0.1155 22.84 0.7648 0.2083 30.22 0.8206 0.1896 22.14 0.7764 0.1747 23.58 0.7967 0.1336
BAD-NeRF [11] 19.46 0.4487 0.5098 15.85 0.3379 0.5447 22.89 0.4483 0.5675 13.29 0.2532 0.6184 21.19 0.7062 0.1685
DP-NeRF [5] 27.59 0.8611 0.1021 23.14 0.7764 0.1897 30.51 0.8246 0.1683 22.72 0.7889 0.1517 24.01 0.8045 0.1187
ExBluRF [6] 25.97 0.8118 0.1398 20.01 0.6824 0.2577 29.05 0.7589 0.3370 20.88 0.7072 0.1991 20.78 0.7014 0.2101
PDRF-10 [8] 27.91 0.8607 0.1008 26.13 0.8298 0.1839 29.16 0.7960 0.2254 23.94 0.8191 0.1491 24.79 0.8271 0.1170
Deblur-GS [4] 27.60 0.8321 0.1059 21.54 0.6683 0.2261 28.26 0.7530 0.2339 21.83 0.7112 0.1859 22.67 0.7664 0.1251
BAGS [9] 27.69 0.8429 0.0896 22.89 0.7386 0.2045 28.33 0.7514 0.2016 23.82 0.7771 0.1587 24.34 0.8160 0.1021
DeepDeblurRF-P (Ours) 29.74 0.8732 0.0665 24.65 0.8128 0.1706 31.25 0.8389 0.1609 25.30 0.8450 0.1270 25.63 0.8532 0.1073
DeepDeblurRF-G (Ours) 30.02 0.8887 0.0728 24.87 0.8030 0.1599 31.04 0.8367 0.1468 25.81 0.8529 0.1043 25.66 0.8532 0.0887

Model Entrance Homelibrary 1 Interior Lotus Homelibrary 2
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Deblur-NeRF [7] 31.45 0.9167 0.0693 29.65 0.8241 0.1335 32.03 0.9086 0.1088 29.77 0.8356 0.1884 27.62 0.8383 0.1283
BAD-NeRF [11] 21.77 0.6295 0.2261 28.51 0.7672 0.1916 30.46 0.8641 0.1402 24.20 0.4690 0.4773 19.77 0.3739 0.5249
DP-NeRF [5] 31.90 0.9217 0.0585 30.04 0.8266 0.1153 32.18 0.9108 0.0960 30.33 0.8532 0.1613 27.83 0.8437 0.1057
ExBluRF [6] 31.24 0.8960 0.0846 29.41 0.7970 0.1553 31.84 0.8917 0.1165 29.29 0.8077 0.2559 27.09 0.7688 0.1986
PDRF-10 [8] 31.75 0.9143 0.0803 30.34 0.8318 0.1510 31.58 0.9043 0.1098 30.08 0.8325 0.2330 27.61 0.8193 0.1447
Deblur-GS [4] 28.93 0.8669 0.1005 27.17 0.7539 0.1761 29.70 0.8360 0.1660 28.51 0.7895 0.2561 26.82 0.7520 0.1527
BAGS [9] 30.81 0.9012 0.0676 29.66 0.8224 0.1097 30.52 0.8763 0.1220 29.03 0.8068 0.2081 27.04 0.7754 0.1182
DeepDeblurRF-P (Ours) 34.13 0.9428 0.0431 31.77 0.8495 0.1227 34.21 0.9441 0.0578 31.58 0.8626 0.1764 29.82 0.8462 0.1098
DeepDeblurRF-G (Ours) 32.52 0.9321 0.0542 32.20 0.8373 0.1378 35.70 0.9554 0.0516 31.40 0.8518 0.1631 30.19 0.8696 0.0795

Table S7. Quantitative results of novel-view synthesis on the defocus blur test set of BlurRF-Synth. We highlight the best metrics and
the second best metrics .

Model Cozyroom Factory Garage Key Paintingroom
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Deblur-NeRF [7] 29.77 0.8941 0.0744 25.69 0.8503 0.1289 31.84 0.8818 0.1183 33.08 0.9136 0.0653 34.98 0.9438 0.0403
BAD-NeRF [11] - - - - - - - - - - - - - - -
DP-NeRF [5] 29.62 0.8911 0.0650 25.71 0.8538 0.1127 31.80 0.8819 0.1124 32.44 0.9024 0.0619 34.64 0.9410 0.0369
ExBluRF [6] - - - - - - - - - - - - - - -
PDRF-10 [8] 29.06 0.8804 0.0783 27.92 0.8731 0.1218 31.77 0.8833 0.1208 31.99 0.8814 0.0895 33.05 0.9215 0.0785
Deblur-GS [4] 27.54 0.8542 0.1158 26.50 0.8584 0.1568 31.55 0.8532 0.1555 31.27 0.8555 0.1391 33.50 0.9262 0.0679
BAGS [9] 30.45 0.8852 0.0613 27.75 0.8881 0.1065 32.16 0.8839 0.1323 30.07 0.8081 0.1682 33.70 0.9312 0.0437
DeepDeblurRF-P (Ours) 31.47 0.9149 0.0552 29.33 0.9008 0.1019 33.90 0.9099 0.1037 36.85 0.9544 0.0505 38.19 0.9660 0.0246
DeepDeblurRF-G (Ours) 31.33 0.9117 0.0505 28.06 0.9088 0.0674 34.63 0.9162 0.0695 38.06 0.9600 0.0478 39.41 0.9720 0.0201

Model Pool Shotgun Swimmingpool Tanabata Wine
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Deblur-NeRF [7] 31.10 0.8513 0.1582 34.80 0.9534 0.0661 32.53 0.8613 0.1583 23.19 0.7924 0.1614 23.30 0.7848 0.1661
BAD-NeRF [11] - - - - - - - - - - - - - - -
DP-NeRF [5] 31.61 0.8627 0.1185 34.62 0.9521 0.0560 33.08 0.8672 0.1392 23.90 0.8098 0.1458 24.11 0.8014 0.1421
ExBluRF [6] - - - - - - - - - - - - - - -
PDRF-10 [8] 30.14 0.8414 0.1711 33.69 0.9406 0.1099 32.71 0.8633 0.1710 25.05 0.8373 0.1414 24.93 0.8281 0.1428
Deblur-GS [4] 29.74 0.8219 0.1814 33.98 0.9435 0.0757 32.49 0.8510 0.2114 22.80 0.7776 0.2056 24.29 0.8036 0.1611
BAGS [9] 29.36 0.8217 0.1336 33.58 0.9407 0.0687 32.06 0.8559 0.1815 24.85 0.7998 0.1359 24.98 0.8231 0.1203
DeepDeblurRF-P (Ours) 33.01 0.8865 0.1317 37.26 0.9673 0.0418 34.79 0.8749 0.1759 25.22 0.8457 0.1353 25.03 0.8376 0.1406
DeepDeblurRF-G (Ours) 31.55 0.8641 0.1044 38.89 0.9727 0.0361 34.69 0.8762 0.1637 24.78 0.8487 0.0995 24.42 0.8294 0.1147
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Figure S4. Qualitative comparison of novel-view synthesis on the BlurRF-Real dataset.
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Figure S5. Qualitative comparison of novel-view synthesis on camera motion blur datasets. The left three columns show results on the test
set of BlurRF-Synth, and the right three columns show real-world scenes of Deblur-NeRF [7].
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Figure S6. Qualitative comparison of novel-view synthesis on defocus blur datasets. The left three columns show results on the test set of
BlurRF-Synth, and the right three columns show real-world scenes of Deblur-NeRF [7].
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