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Abstract

In this supplementary material, we provide detailed descriptions for millimeter-wave (mmWave) signal pre-processing as
well as implementation specifics of the proposed MVDoppler-Pose model. Furthermore, we offer additional details on data
acquisition and error metrics, and present a broader set of experimental results.

A1. Details for Experimental Setup and Dataset
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Figure A1. Experimental setup. Top: Experimental environment including RoI and data capture setup. Bottom: Selected walking patterns
of subjects during data capture.

In this project, we expanded the scope of the MVDoppler [5] dataset with enhanced annotations of 3D human poses, now
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releasing it as MVDoppler-Pose. In this section, we detail the experimental setup as well as the methodology employed for
generating precise human pose annotations corresponding to the MVDoppler data.

A1.1. Experimental Configuration

Table A1. Comparison of MVDoppler-Pose with related datasets. * denotes that the dataset is not publicly available. N/A: Not reported
in the paper. Note that most of current approaches operate for subjects without global walking (i.e. performing activities while standing
still), from limited distances between the sensor and subjects. In contrast, our MVDoppler-Pose involves freer walking trajectory patterns
of subjects from much larger RoI.

Dataset
Modality Trajectory Pattern

Distance RoImmWave
(Single)

mmWave
(Multi)

Standing
in Place

Walking
in Straight

Walking
in Circle Random

RF-Pose3D [23] * ✓ - ✓ ✓ ✓ ✓ N/A N/A
mmPose [13] * ✓ - ✓ - - - N/A -
mmMesh [19] * ✓ - ✓ ✓ ✓ - 1.5m N/A
MARS [1] ✓ - ✓ - - - 2m -
mmBody [3] ✓ - ✓ - - - 3m∼5m -
mRI [2] ✓ - ✓ ✓ - - N/A -
mm-Fi [22] ✓ - ✓ - - - 3m -
M4esh [20] * ✓ - ✓ ✓ ✓ - 0m∼4.6m 3m×4.6m
mmGPE [21] * ✓ - ✓ ✓ - - 1.5m∼4m -
MDPose [15] * ✓ - ✓ - - - 4m -
HuPR [8] ✓ ✓ ✓ ✓ - - N/A -
XRF55 [17] ✓ - ✓ ✓ - - 0.75m∼3.85m 3.1m×3.1m

MVDoppler-Pose ✓ ✓ ✓ ✓ ✓ ✓ 5m∼15m 10m×10m

The Fig. A1 shows the overall experimental setup for the MVDoppler dataset, involving an HD stereo camera (ZED from
Stereolabs) and two off-the-shelf FMCW radars (AWR1843 from Texas Instruments). The experimental layout, as illustrated
in the top of the figure, strategically positions the two mmWave radars in a cross-view arrangement around a designated
10m×10m region of interest (RoI), with each sensor placed 5m away from this rectangular area. To optimize sensor func-
tionality as well as minimize cross-interference, the radars operated on different frequency bands (77-78GHz for mmWave
radar1 and 79-80GHz for mmWave radar2), facilitating their simultaneous, high-duty-cycle (>95%) operation. Additionally,
synchronized RGB recordings from the stereo camera, co-located with mmWave Radar1, were captured together for en-
hanced visual analysis of the scene. The dataset documentation [5] offers further details including IRB approval, participant
statistics, and sensor specifications.

During data collection within the extensive RoI, a total of 13 participants were instructed to perform different types of hand
movements, including normal walking, hands in pockets, and texting. These activities were distinctly recorded across seven
different walking patterns (the bottom side of Fig. A1) within the entire RoI, which naturally guarantees a comprehensive
representation of diverse locations, movement speeds, and walking angles of each subject.

Note that our MVDoppler-Pose is the first mmWave human pose estimation (HPE) dataset that fully involves the compre-
hensive coverage of both location and angle diversities for human subjects while engaging in various activities, as depicted
in Fig. A2. Table A1 shows the comparison between the current radio-based HPE models with MVDoppler-Pose in the
context of experimental setups. Except for RF-Pose3D [23] which utilizes a bulky, custom hardware system, most of existing
mmWave HPE models operate under controlled human walking scenarios (i.e. without free random movements) as well as
restricted RoI sizes. In contrast, our MVDoppler-Pose involves freer walking trajectory patterns from much larger RoI. By
capturing a wide range of positional and angular diversity from this expanded RoI, MVDoppler-Pose sets a new benchmark
for comprehensive evaluation of HPE task across a variety of possible human walking trajectory patterns, surpassing the
scope and limitations of the previous mmWave-based HPE datasets.



Figure A2. Dataset statistics across both location (Left) and angle diversities (Right).

A1.2. 3D Human Pose Annotation
To generate 3D human pose annotations for each dataset frame, we leveraged the overall annotation pipeline described in
[2, 22]. This approach primarily involves lifting the multi-view 2D poses, derived from synchronized RGB recordings,
into accurate 3D configurations through the combination of 3D triangulation techniques and optimization-based refinement
processes. Here, manual 2D pose annotation of each RGB frame was used to ensure the quality and accuracy of the 2D data
being converted into 3D space. The estimated 3D poses with errors are then cleaned up again through visual inspection to
further improve the reliability of the annotations, yielding over 600k frames of final paired data.

A2. Details for mmWave Pre-Processing Pipeline
In this section, we introduce the basic principles of mmWave signal, outlining the pre-processing pipeline and its distinctive
characteristics.

A2.1. FMCW Signal Modeling and Pre-Processing
In this subsection, we delve into the detailed pipeline for processing mmWave signals based on a frequency-modulated
continuous-wave (FMCW) radar sensor. The FMCW radar operates by transmitting a periodic FMCW signal, which, after
interacting with objects in its surroundings, reflects back to the sensor. The formal representation of the transmitted (Tx) and
received (Rx) signals of the FMCW radar can be modeled as [4, 7, 9]
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where xTx refers to the transmitted FMCW signal, and xRx is the received signals represented by the weighted summation
of time-delayed xTx. tf and t denote the fast and slow time instant, each of which reflects the spatial domain with respect
to the round-trip time-of-flight delay and temporal domain with respect to the pulse repetition interval (PRI) of the radar,
respectively. fc, BW , Tf and c indicate the center frequency, bandwidth, pulse width, and the speed of light, respectively. α
signifies the reflection coefficient of each electromagnetic (EM) scatterer and R is the radial distance between the sensor and



the corresponding scatterer. Using a frequency mixer, the received signal sRx(tf) can be converted to a baseband signal as
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Here, ∗ is the conjugate operator and λ denotes the signal wavelength (λ = c/fc). It should be noted that the converted
baseband signal comprises sinusoidal signals with different fundamental frequencies of 2BWRi(t)/ (Tfc), where BW , Tf ,
and c are constant values over time. Consequently, we can transform r(tf , t) into a range profile signal by applying a fast
Fourier transform (FFT) with respect to tf :
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where R = (cTff)/(2BW ) spans the radial range domain. Ftf {·} refers to the FFT operator across tf -axis and δ is an
impulse signal envelope. This FFT operation results in a signal where each impulse’s position in the frequency domain
corresponds to the radial range Ri(t) of the scatterer, thereby reflecting the spatial position of objects in the scene.

Note that the range resolution of ∆R = c/(2BW ) [9], remains constant regardless of the distance of the target R,
ensuring mmWave radar’s capability to capture the spatial context of subjects irrespective of their distance, provided the
SNR level is sufficient.

A2.2. Doppler Effect
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Figure A3. Doppler measurements of a person walking towards the sensor (Left) or a person with tangential movements (Right).

Beyond the positional measurement, the Doppler property in mmWave radar enables the direct capture of motional infor-
mation of the reflected objects. This effect is observable as phase differences over time in mmWave radar’s range profiles,
mathematically expressed as

∆θ (t) =
4π∆R

λ
=

4πv∆t

λ
, (A5)



where, v refers to the relative velocity between the mmWave sensor and each EM scatterer (e.g. joint of human body) in
the radial direction. Given a sufficiently small time window to ensure a constant v, this constant velocity component leads
to a constant periodicity in the mmWave phase that converges to a specific Doppler shift in the frequency domain. Thus,
we can extract the Doppler information (i.e. motional information of the body scatterer) at each time window, by utilizing a
short-time Fourier transform (STFT) along the slow time dimension.

The motional (i.e. radial velocity) resolution observed by Doppler is determined as ∆v = λ/(2T ), where T represents the
length of the time window [6]. Remarkably, this implies that the effective resolution of mmWave radar’s motional information
is independent to the distance of subjects, similar to its positional counterpart.

Meanwhile, the radial velocity v measured by Doppler can further be decomposed into v = vG cos(ϕ), where vG is the
absolute velocity of the target and ϕ denotes the angle between the target’s movement direction and radar line-of-sight (LoS).
That is, the motional information measured by Doppler is highly sensitive to the relative angle ϕ. For instance, a person
walking directly towards (ϕ = 180◦) or away (ϕ = 0◦) from the radar maximizes the Doppler measurement, whereas one
with tangential movements (ϕ = ±90◦) minimizes it (Fig. A3).

A3. Details for Benchmark and Model Implementation
A3.1. Details on Model Implementation
In the development of MVDoppler-Pose, we harness both positional and motional mmWave measurements to achieve en-
hanced performance compared to previous single-modal approaches. We drive positional information from the processed
range profiles s(R, t) after applying clutter suppression and selective windowing for a detection range of up to 15m. To ex-
tract motional information, we first identify the subject’s location using the constant false alarm rate (CFAR) algorithm [12].
Subsequently, we employ STFT within a 1.5m range window centered on the detected location, utilizing a Hamming window
of 128 chirp durations, an 87.5% window overlap, and an FFT size of 128. Both the magnitude components of positional and
motional data are clipped to 3 seconds, resized into 128×128 images, and normalized for consistency.

To train the MVDoppler-Pose model, we employ the Adam optimizer with an initial learning rate of 10−4, a weight
decay of 0.01, and a batch size of 32, across 250 epochs. The learning rate follows a cosine annealing scheduler with warm
restarts, a strategy designed to finely adjust the learning rate throughout the training phases. Specifically, the parameters of
the scheduler involve an initial restart interval of 25, a periodicity increase factor of 1, and a minimum learning rate threshold
of 10−6. The hyper-parameters regarding our cross-domain loss function were empirically selected as λp = 1, λm = 0.1,
and T = {2, 4, 6, 8}.

For fair comparison across all baseline benchmarks, including both vision-based HPE models and MVDoppler-Pose
variations, we apply a consistent time window length for all comparative analyses. The vision-based baselines were re-
implemented following their official codes to match the conditions of MVDoppler-Pose dataset, and the single-modal or
single-view MVDoppler-Pose variants were developed by skipping the operations of corresponding branches. During infer-
ence, we select the central frame from the 3D pose sequences as our final output.

A3.2. Details on Error Metrics
To evaluate the quality of the 3D pose outputs, we utilize the mean per joint position error (MPJPE), a metric that quantifies
the spatial distance between the predicted and actual 3D poses. In addition to MPJPE focusing primarily on the spatial quality
of the estimated poses, we introduce a correlation metric (ρ), designed to assess the temporal quality and coherence of the
estimated 3D joint patterns. This metric leverages Pearson’s correlation coefficient to analyze the alignment between the
time-series of predicted joints and the reference, calculating an average correlation across joints.

Notably, this correlation metric offers a unique advantage over traditional distance-based metrics by emphasizing the
temporal fidelity of joint movements without being largely sensitive to minor offset shifts. For a more intuitive analysis,
we compare the spatial distance- and correlation-based errors for three distinct estimated patterns against a given sinusoidal
signal (Fig. A4). Despite the global quality of the three estimations being significantly different, the distance-based metric
(i.e. L2 distance) indicates a uniform level of error, underscoring its inability to fully capture the global quality of the joints
over time. In contrast, the correlation metric correctly reflects the temporal quality between the predicted and actual patterns,
showcasing its superior capability in globally reflecting the temporal dynamics of human movement patterns.
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Figure A4. Comparison between distance- and correlation-based metrics. Note that the error values are normalized, and the correlation-
based metrics are visualized on a negative basis (i.e. 1− ρ) for a more straightforward comparison.

Table A2. Quantitative comparison of MVDoppler-Pose-variants against the vision- and mmWave-based models for all walking scenarios
(between -180◦ and 180◦) according to different levels of target distance.

Method Modality y <8.5m 8.5m≤ y ≤11.5m 11.5m< y
MPJPE↓ ρ↑ MPJPE↓ ρ↑ MPJPE↓ ρ↑

Sun et al. [14] RGB 73.37 0.29 79.95 0.23 90.56 0.21
Wei et al. [18] RGB 71.10 0.31 77.29 0.23 87.44 0.22
Li et al. [10] RGB 80.86 0.37 86.43 0.32 103.68 0.32
Zhao et al. [24] RGB 78.75 0.37 85.84 0.33 101.56 0.32
Wang et al. [16] mmW-Position 122.30 0.24 121.46 0.24 125.51 0.23
Zhou et al. [25] mmW-Motion 124.41 0.27 125.93 0.27 127.09 0.26
Tang et al. [15] mmW-Motion 121.80 0.28 120.32 0.27 125.60 0.27

Ours (Single-View) mmW-Position 117.99 0.25 114.03 0.25 114.77 0.26
Ours (Single-View) mmW-Motion 120.53 0.29 118.38 0.27 124.94 0.27
Ours (Single-View) mmW-Multi 104.89 0.30 98.59 0.28 104.02 0.29

Ours (Multi-View) mmW-Position 69.67 0.47 66.47 0.48 64.75 0.48
Ours (Multi-View) mmW-Motion 71.48 0.52 67.78 0.51 66.13 0.52
Ours (Multi-View) mmW-Multi 64.20 0.53 59.99 0.52 58.80 0.53

A4. Additional Results
A4.1. Results for All Walking Scenarios
Note that the quantitative analysis presented in the Table 1 of the main paper primarily addressed comparisons within self-
occluded scenarios (walking angles between -45◦ and 45◦). We extend our analysis to encompass all walking scenarios
(walking angles between -180◦ and 180◦), which are summarized in Table A2. This broader analysis (i.e. not only involving
challenging self-occlusion scenarios but also easier samples such as normal walking) shows general performance enhance-



ments in camera-based models. Nevertheless, despite these improvements, they still continue to experience performance
degradation with increasing distance, unlike the mmWave baselines which maintain more consistent results.

A4.2. Effect of Location and Walking Angle

Vision mmWave
(Single-View)

mmWave
(Multi-View)

Figure A5. MPJPE of each baseline model across the RoI (Top) and walking velocity (Bottom). Vision performance is degraded both from
long-distance and self-occluded (i.e. heading backward) cases, while single-view mmWave is sensitive to the movements with perpendicular
direction. Multi-view mmWave approach maintains great independence for both the subject’s location and moving direction.

For a more granular analysis with respect to the effect of locations and walking angles of the subjects, we dissect the
pose estimation result of each baseline model according to 2D location (x-y) and 2D velocity (vx-vy), as showcased in Fig.
A5. The spatial distribution analysis (x-y plot) uncovers a significant decline in the performance of the vision-based model
with increasing distance, attributed to the diminishing information content in each pixel at extended ranges. Furthermore, an
exploration of the vx-vy plot, which directly reflects the impact of a subject’s orientation, highlights the struggles of vision
approaches in occlusion scenarios, such as movements directed away from the camera. Single-view mmWave model, on the
other hand, maintains robustness in distance variations, but experiences significant degradation when individuals move in a
tangential direction to the radar. The multi-view mmWave model consistently shows significant resilience across nearly all
scenarios both in x-y and vx-vy plots, achieving trajectory-agnostic HPE within the entire coverage.

Fig. A6 provides a detailed examination of MVDoppler-Pose in multi-view setup utilizing additional complementary
metrics. This extended evaluation encompasses Procrutes Analysis MPJPE (PA-MPJPE), temporal correlation coefficient
(ρ), percentage of correct keypoints (PCK) with a threshold of 150mm, and global orientation error. Across all examined
metrics, MVDoppler-Pose demonstrates considerable stability across x-y and vx-vy variations.

A4.3. Effect of Time Window
Table A3 represents the performance of MVDoppler-Pose with respect to different temporal window lengths. The table
demonstrates that increasing the window sizes enriches the temporal context, improving overall model performance.

A4.4. Effect of Backbone Model
Table A4 shows the performance of MVDoppler-Pose when trained and evaluated with different MobileViT architectures
[11]. MVDoppler-Pose with larger backbones tends to achieve more accurate predictions but at higher computation costs.
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Figure A6. MVDoppler-Pose analysis with additional evaluation metrics across the RoI (Top) and walking velocity (Bottom). MVDoppler-
Pose shows considerable resilience for both the subject’s location and direction variations.

Table A3. Performance comparison for different window sizes

Window Size MPJPE↓ PCK↑ ρ↑
1-s 65.80 89.42 0.51
3-s 60.96 93.24 0.53
5-s 58.89 93.61 0.53

Table A4. Performance comparison for different baseline models

Backbone Network MPJPE↓ PCK↑ ρ↑
MobileViT-XXS [11] 61.21 93.08 0.53
MobileViT-XS [11] 60.96 93.24 0.53
MobileViT-S [11] 58.42 94.17 0.54

A4.5. Additional Visualization
We provide additional qualitative results of the proposed MVDoppler-Pose in Fig. A7. The figure displays the predicted
outputs of MVDoppler-Pose (in multi-view setup) against their corresponding RGB references over time.
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