PROMPT-CAM: Making Vision Transformers Interpretable
for Fine-Grained Analysis

Supplementary Material

The supplementary is organized as follows.

* Appendix A: Related Work

* Appendix B: Details of Architecture Variant (cf. subsec-
tion 2.4 of the main paper)

* Appendix C: Dataset Details (cf. subsection 3.1 of the
main paper)

e Appendix D: Inner Workings of Visualization (cf. sub-
section 2.3 of the main paper)

* Appendix E: Additional Experiment Settings (cf. subsec-
tion 3.1 of the main paper)

» Appendix F: Additional Experiment Results and Analysis
(cf. subsection 3.2 of the main paper)

* Appendix G: More visualizations of different dataset (cf.
Figure 4 of the main paper)

A. Related Work

Pre-trained Vision Transformer. Vision Transformers
(ViT) [9], pre-trained on massive amounts of data, has be-
come indispensable to modern Al development. For exam-
ple, ViTs pre-trained with millions of image-text pairs via
a contrastive objective function (e.g., a CLIP-ViT model)
show an unprecedented zero-shot capability, robustness to
distribution shifts and serve as the encoders for various
power generative models (e.g. Stable Diffusion [35] and
LLaVA [19]). Domain-specific CLIP-based models like
BioCLIP [38] and RemoteCLIP [18], trained on millions
of specialized image-text pairs, outperform general-purpose
CLIP models within their respective domains. More-
over, ViTs trained with self-supervised objectives on ex-
tensive sets of well-curated images, such as DINO and DI-
NOv2 [4, 29], effectively capture fine-grained localization
features that explicitly reveal object and part boundaries.
We employ DINO, DINOv2, and BioCLIP as our backbone
models in light of our focus on fine-grained analysis.

Prompting Vision Transformer. Traditional approaches to
adapt pre-trained transformers—full fine-tuning and linear
probing—face challenges: the former is computationally
intensive and prone to overfitting, while the latter struggles
with task-specific adaptation [22, 23]. Prompting, first pop-
ularized in natural language processing (NLP), addressed
such challenges by prepending task-specific instructions to
input text, enabling large language models like GPT-3 to
perform zero-shot and few-shot learning effectively [3].
Recently, prompting has been introduced in vision trans-
formers (ViTs) to enable efficient adaptation while lever-
aging the vast capabilities of pre-trained ViTs [12, 42, 53].

Visual Prompt Tuning (VPT) [12] introduces learnable em-
bedding vectors, either in the first transformer layer or
across layers, which serve as “prompts” while keeping the
backbone frozen. This offers a lightweight and scalable al-
ternative to full fine-tuning, achieving competitive perfor-
mance on a diverse range of tasks while preserving the pre-
trained features.

Explainable methods. Understanding the decision-making
process of neural networks has gained significant traction,
particularly in tasks where model transparency is criti-
cal. Explainable methods (XAI) focus on post-hoc anal-
ysis to provide insights into pre-trained models without
altering their structure. Methods like Class Activation
Mapping (CAM) [52] and Gradient-weighted CAM (Grad-
CAM) [37] visualize class-specific contributions by project-
ing gradients onto feature maps. Subsequent improvements,
such as Score-CAM [46] and Eigen-CAM [25], incorporate
global feature contributions or principal component analy-
sis to generate more detailed explanations. Despite these
advancements, many XAI methods produce coarse, low-
resolution heatmaps, which can be imprecise and fail to
fully capture the model’s decision-making process.

Interpretable methods. In contrast, interpretable meth-
ods provide a direct understanding of predictions by align-
ing intermediate representations with human-interpretable
concepts. Early approaches such as ProtoPNet [6] utilized
“learnable prototypes” to represent class-specific features,
enabling visual comparison between input features and pro-
totypical examples. Extensions like ProtoConcepts [21],
ProtoPFormer [51], and TesNet [47] have refined this ap-
proach, integrating prototypes into transformer-based ar-
chitectures to achieve higher accuracy and interoperability.
More recent advancements leverage transformer architec-
tures to enable interpretable decision-making. For example,
Concept Transformers utilize query-based encoder-decoder
designs to discover meaningful concepts [34], while meth-
ods like INTR [31] employ competing query mechanisms
to elucidate how the model arrives at specific predictions.
While these approaches offer fine-grained interpretability,
they require substantial modifications to the backbone, lead-
ing to increased training complexity and longer computa-
tional times for new datasets.

PROMPT-CAM aims to overcome the shortcomings of
both approaches. The special prediction mechanism en-
courages explainable, class-specific attention that is aligned
well with model predictions. Simultaneously, we leverage
pre-trained ViTs by simply modifying the usage of task-
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Figure 10. Accuracy versus the number of layers (from last
layer to first) attended by class-specific prompts. As the num-
ber of attended layers increases in class-specific prompts, accuracy
decreases, highlighting the importance of class-agnostic prompts.
The more class-agnostic prompts a model has, the better trait lo-
calization and higher accuracy are achieved.

specific prompts without altering the backbone architecture.

B. Details of Architecture Variant

In this section, we explore variations of PROMPT-CAM
by experimenting with the placement of class-specific
prompts within the vision transformer (ViT) architecture.
While PROMPT-CAM-SHALLOW introduces class-specific
prompts in the first layer and PROMPT-CAM-DEEP applies
them in the final layer, we also investigate injecting these
prompts at various intermediate layers. Specifically, we
control the layer depth at which class-specific prompts are
added and analyze their impact on feature interpolation.

In PROMPT-CAM-SHALLOW, class-specific prompts
are introduced at the first layer (z = 1), allowing them to
interact with patch features across all transformer layers
(ie., E;, i = 0,--- ,N — 1) without using class-agnostic
prompts. As we increase the layer index 7 where class-
specific prompts are added, the number of layers class-
specific prompts interact decreases. At the same time,
the number of preceding class-agnostic prompts increases,
which interacts with the preceding (¢ —1) layers (mentioned
in subsection 2.2).

In Figure 11, we demonstrate the relationship between
the number of layers accessible to class-specific prompts
and their ability to localize fine-grained traits effectively.
The visualization provides a clear pattern: as the prompts
attend only to the last layer (first row) (same as PROMPT-
CAM-DEEP), their focus is highly localized on discrimina-
tive traits, such as the red patch on the wings of the “Red-
Winged Blackbird.” This precise focus enables the model to
excel in fine-grained trait analysis.

As we move downward through the rows, class-specific
prompts attending to increasingly more layers (from top to

bottom), the attention maps become progressively more dif-
fused. For instance, in the middle rows (e.g., rows 6-8), the
attention begins to cover broader regions of the object rather
than the trait of interest. This diffusion correlates with a
drop in accuracy, as seen in the accuracy plot, Figure 10.

In the bottom rows (e.g., rows 10-11), the attention be-
comes scattered and unfocused, covering irrelevant regions.
This fails to correctly classify the object. The accuracy plot
confirms this trend: as the class-specific prompts attend to
more layers, accuracy steadily decreases.

C. Dataset Details

Table 3. Dataset statistics (Animals).

Animals
Bird CUB Dog Pet  Insects Fish ~ Moth RareS.

# Train Images 84,635 5994 12,000 3,680 52,603 35,328 5,000 9,584
# Test Images 2,625 5795 8580 3,669 22619 7556 1,000 2399
# Labels 525 200 120 37 102 414 100 400

Table 4. Dataset statistics (Plants & Fungi and Objects).

Plants & Fungi Objects
Flower MedLeaf Fungi Car Food

# Train Images 2,040 1,455 12,250 8,144 75,750
# Test Images 6,149 380 2,450 8,041 25,250
# Labels 102 30 245 196 101

We comprehensively evaluate the performance of
PROMPT-CAM on a diverse set of benchmark datasets
curated for fine-grained image classification across mul-
tiple domains. The evaluation includes animal-based
datasets such as CUB-200-2011 (CUB) [45], Birds-525
(Bird) [33], Stanford Dogs (Dog) [15], Oxford Pet
(Pet) [30], iNaturalist-2021-Moths (Moth) [43], Fish Vista
(Fish) [24], Rare Species (RareS.) [41] and Insects-2
(Insects) [49]. Additionally, we assess performance on
plant and fungi-based datasets, including iNaturalist-2021-
Fungi (Fungi) [43], Oxford Flowers (Flower) [28] and
Medicinal Leaf (MedLeaf) [36]. Finally, object-based
datasets, such as Stanford Cars (Car) [16] and Food 101
(Food) [2], are also included to ensure comprehensive cov-
erage across various fine-grained classification tasks. For
the Moth and Fungi dataset, we extract species belong-
ing to Noctuidae Family from taxonomic class Animalia
Arthropoda Insecta Lepidoptera Noctuidae and species be-
longing to Agaricomycetes Class from taxonomic path
Fungi— Basidiomycota, respectively, from the iNaturalist-
2021 dataset. For hierarchical classification and trait local-
ization, we use taxonomical information from the Fish and
iNaturalist-2021 dataset. We provide dataset statistics in Ta-
ble 3 and Table 4.
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Figure 11. Visualization of attention maps for different configurations of PROMPT-CAM. For a random image of the “Red-Winged
Blackbird” species, twelve attention heads of the last layer of PROMPT-CAM on the DINO backbone are shown for the ground truth class
prompt. The first row shows class-specific prompts attending to only the last layer (as PROMPT-CAM-DEEP), resulting in highly localized
attention on fine-grained traits, such as the red patch on the wings of the “Red-Winged Blackbird.” As these prompts attend to increasingly
more layers (progressing down the rows), the attention becomes more diffuse, covering broader regions of the object and eventually leading

to a loss of focus on relevant traits.

[ Example Image ] { Species with Similar Traits ]
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Figure 12. Example Image of a “Western Gull” and its closest
bird species, highlighting overlapping traits. Correctly classify-
ing the “Western Gull” requires attention to multiple subtle traits,
as it shares many traits with similar species. This highlights the
need to examine a broader range of attributes for accurate classifi-
cation.

D. Inner Workings of Visualization

Which traits are more discriminative? As discussed in
subsection 2.3, certain categories within the CUB dataset
exhibit distinctive traits that are highly discriminative. For

instance, in the case of the “Red-winged Blackbird,” the
defining features are its red-spotted black wings. Similarly,
the “Ruby-throated Hummingbird” is characterized by its
ruby-colored throat and sharp, long beak. However, some
species require consideration of multiple traits to distin-
guish them from others. For example, correctly classifying
a “Western Gull” demands attention to several subtle traits
(Figure 12), as it shares many features with other species.
This observation raises a key question: can we automati-
cally identify and rank the most important traits for a given
image of a species?

To address this, we propose a greedy algorithm that pro-
gressively “blurs” traits in a correctly classified image until
its decision changes. This process reveals the traits that are
both necessary and sufficient for the correct prediction.

Greedy approach for identifying discriminative traits:
Suppose class c is the true class and the image is correctly
classified. In the first greedy step, for each attention head,
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Figure 13. Greedy approach to identify and rank important traits for species classification. For the species “Ruby Throated Hum-
mingbird”, we progressively blur attention heads (from top to bottom), retaining only the traits necessary for correct classification, using
the PROMPT-CAM on the DINO backbone. The blurred attention heads are shown in solid blue color.

r=1,---, R (R attention heads), we iteratively replace the
attention vector ay_;, with a uniform distribution:
1
a?\}tl < M 1,

where 1 € RM is a vector of all ones, and M is the num-
ber of patches. This replacement effectively assigns equal
importance to all patches in the attention weights, thereby
“blurring” the r-th head’s contribution to class c. After this
modification, we recalculate the score s|c| in Equation 1.
For each iteration, we select the attention head r* that,
when blurred, results in the highest probability for the cor-
rect class c. This head r* is then added to B, (set of blurred
attention heads), as the blurred head with the highest s[c| is
the least important and contributes the least discriminative
information for class c. We repeat this process, iteratively

blurring additional heads and updating B,,, until blurring
any remaining head not in B, changes the model’s predic-
tion. In Figure 13, for an image of “Ruby Throated Hum-
mingbird” we show this greedy approach, by progressively
blurring out the attention heads in each step, retaining only
necessary traits.

Attention head vs species. In addition to image-level anal-
ysis, we conduct a species-level investigation to determine
whether certain attention heads consistently focus on impor-
tant traits across all images of a species. Using the greedy
approach discussed in the above paragraph, we analyze each
correctly classified image of a species c to iteratively select
the attention head r* that minimally impacts the probability
of the correct class c. We then examine how the probabil-
ity s[c] changes as attention heads are progressively blurred
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Figure 14. Visualization of ground truth class probability vs. the number of masked heads at the species level in PROMPT-CAM.
The left plots show how the probability of the ground truth class changes for all correctly classified images in a species, as heads are
progressively masked in the greedy approach discussed in Appendix D. For class (a) “Yellow Breasted Chat,” the probability drops
significantly after masking eight heads, indicating that the last four heads are critical. The top two heads, head-6 and head-10, focus on the
yellow breast and lower belly. For class (b) “Cardinal,” the top 2 heads, head-9 and head-10, attend to the black pattern on the face and the
red belly. In class (c) “Red Faced Cormorant,” the critical heads, head-6 and head-9, emphasize the red head and the neck’s shape. These
results highlight the interpretability of PROMPT-CAM in identifying essential traits for each species.

or masked for all images of a species. This analysis, visu- ture traits critical for class prediction. In the Figure 14,
alized in Figure 14, demonstrates that for most species in we highlight the top-2 attention heads for example images
the CUB dataset, approximately four attention heads cap- from various species. The results reveal that these heads
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Figure 15. Comparison of top attention heads for PROMPT-
CAM and Linear probing on two images of the species
“Painted Bunting.” For the correctly classified image by both,
PROMPT-CAM focuses on meaningful traits such as the blue head,
wings, tail, and red lower belly, while Linear probing produces
noisy and less diverse heatmaps. For the other image, Linear prob-
ing relies on global memorized attributes for correct classification,
whereas PROMPT-CAM attempts to identify object-specific traits,
resulting in an interpretable misclassification due to poor visibility
of key features.

consistently focus on important, distinctive traits for their
respective species. For instance, in the case of the “Car-
dinal”, head-9 focuses on the black stripe near the beak,
while head-10 attends to the red breast color—traits es-
sential for identifying the species. Similarly, for “Yellow-
breasted Chat” and “Red-faced Cormorant”, attention heads
consistently highlight relevant features across their respec-
tive species. These findings emphasize the robustness of our
approach in identifying class-specific discriminative traits
and the flexibility of choosing any number of ranked impor-
tant traits per species.

E. Additional Experiment Settings

E.1. Implementation Details

Dataset-specific settings. For DINO backbone, the
learning rate varied across datasets within the set
{0.01,0.1,0.125}, selected based on dataset-specific char-
acteristics. For Bird and MedLeaf, training was conducted
for 30 epochs. For all other datasets, training was conducted
for 100 epochs. For DINOv2 backbone, the learning rate
varied across datasets within the set of {0.005,0.01}, se-
lected based on dataset-specific characteristics. For Insect,
CUB, and Bird, training was conducted for 130 epochs. For
all other datasets, training was conducted for 100 epochs.
For DINOv2 backbone, the learning rate varied across
datasets within the set of {0.05,0.01}, selected based on

dataset-specific characteristics. For all datasets, training
was conducted for 100 epochs. A batch size of 64 was used
for all datasets and all backbones.

Optimization settings. Stochastic Gradient Descent (SGD)
optimizer with a momentum of 0.9. Weight Decay 0.0 was
used for all datasets for DINO, 0.001 for the rest. A cosine
learning rate scheduler was applied, with a warmup period
of 10 epochs and cross-entropy loss was used.

E.2. Baseline Methods

We used XAI methods Grad-CAM, Score-CAM, and
Eigen-CAM to compare PROMPT-CAM performance with
them on a quantitative scale. For qualitative comparison,
we compare with a variety of interpretable methods, Pro-
toPFormer, TesNet, INTR, and ProtoPConcepts shown in
Figure 6.

F. Additional Experiment Results

Model performance analysis. As discussed in subsec-
tion 2.3, we analyze misclassified examples by PROMPT-
CAM, illustrated in Figure 5. We attribute the slight de-
cline in accuracy of PROMPT-CAM to its approach of forc-
ing prompts to focus on the object itself and its traits, rather
than relying on surrounding context for classification. In
Figure 15, we compare the heatmaps of two images of the
species “Painted Bunting”. The first image, I., is cor-
rectly classified by both PROMPT-CAM and Linear prob-
ing, while the second image, I,,, is correctly classified by
Linear probing but misclassified by PROMPT-CAM. The
image I,,, presents additional challenges: it is poorly lit,
further from the camera, and depicts a less common gender
of the species in the CUB dataset.

For I., the top heatmaps from Linear probing appear
noisy and less diverse compared to PROMPT-CAM. In con-
trast, PROMPT-CAM exhibits a more meaningful focus,
with its top attention heads targeting the blue head, part of
the wings, the tail, and the red lower belly—traits charac-
teristic of the species.

In the case of I,,,, although Linear probing predicts the
image correctly, its top attention heads fail to focus on con-
sistent traits. Instead, they appear to rely on global features
memorized from the training dataset, resulting in a lack of
meaningful interpretation. On the other hand, PROMPT-
CAM, despite misclassifying I,,,, focuses its attention on
traits within the object itself. The heatmaps reveal that
PROMPT-CAM attempts to identify relevant features, but
the lack of visible traits in the image leads to an inter-
pretable misclassification.

In Figure 16, the comparison between Linear Probing
and PROMPT-CAM in the attention heatmaps reveals a fun-
damental difference in their classification and trait identifi-
cation approach. As shown in the heatmaps, Linear Probing
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Figure 16. Comparison of attention heatmaps for Linear Probing and PROMPT-CAM. On random images of “Yellow Headed Black-
bird” and “Scott Oriole” from the CUB dataset, in (a), Linear Probing consistently focuses on similar body parts (e.g., tail, head, under-tail,
wings) across all species, showing limited adaptability to traits specific to each class. In contrast, (b) PROMPT-CAM (using pretrained
DINO) dynamically adapts its attention to focus on distinct and meaningful traits required for class-specific identification. For instance,
PROMPT-CAM highlights traits such as the yellow head and breast for “Yellow Headed Blackbird” and the wing pattern for “Scott Oriole”.

uniformly distributes its attention across similar body parts, focuses on specific traits important for differentiating one
such as the tail, head, and wings, irrespective of the species class from another. For example, in the case of the “Yellow
being analyzed. This behavior indicates that Linear Probing Headed Blackbird,” PROMPT-CAM emphasizes the yellow
relies on global patterns that may not be specific to any par- head and breast, traits unique to the species. Similarly, for

ticular class. In contrast, for each species, PROMPT-CAM the “Scott Oriole,” the yellow breast and wing patterns are
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Figure 17. Attention heatmaps of cls-token for Linear Probing on misclassified images. For some random images of “Scarlet Tanager”
from the CUB dataset, Linear Probing highlights the same body parts across images, failing to provide meaningful insights into misclassi-

fications.

Top Attention Heads ) Backbone

DINO

DINOvV2

Ruby Thoated
Hummingbird

BioCLIP

DINO

DINOvV2

Chattering Lori

BioCLIP

Figure 18. Visualization of top attention heads of PROMPT-
CAM for DINO, DINOvV2 and BioCLIP backbones. For ran-
dom correctly classified images from “Ruby Throated Humming-
bird” and “Chattering Lori” species from Bird Dataset, top-4 at-
tention heads (from left to right) are shown. PROMPT-CAM can
identify and locate meaningful important traits for species regard-
less of pre-trained visual backbone used.

prominently highlighted. By prioritizing traits essential for
species identification, PROMPT-CAM provides a more ro-
bust and meaningful framework for understanding model
decisions.

Furthermore, in Figure 17, we present attention
heatmaps for random images of the “Scarlet Tanager”
species from the CUB dataset, generated using Linear Prob-
ing. Linear Probing consistently assigns attention to the

same body parts (e.g., wings, head) across images, without
providing meaningful insights into the reasons for misclas-
sification. In contrast, PROMPT-CAM (as shown in Fig-
ure 8 and Figure 15) provides a more interpretable explana-
tion for misclassifications. When PROMPT-CAM misclas-
sifies an image, it is evident that the misclassification oc-
curs due to the absence of the necessary trait in the image,
demonstrating its focus on biologically relevant and class-
specific traits.

This analysis underscores PROMPT-CAM prioritizes in-
terpretability, ensuring that its classifications are based on
meaningful and consistent traits, even at the cost of a slight
accuracy decline.

Human assessment of trait identification settings. In
subsection 3.2, we discussed how we measured robustness
of PROMPT-CAM with assessment from human observers.
To evaluate the effectiveness of trait identification, in the
human assessment, we compared PROMPT-CAM, TesNet
[47], and ProtoConcepts [21]. A total of 35 participants
with no prior knowledge of the models participated in the
study. Participants were presented with a set of top attention
heatmaps (PROMPT-CAM and INTR) or prototypes gen-
erated by each method and image-specific class attributes
found in CUB dataset. Then they were asked to identify
and check the traits they perceived as being highlighted in
the heatmaps. The traits were taken from the CUB dataset,
where image-specific traits are present. We used four ran-
dom correctly classified images by every method, from
four species “Cardinal”, “Painted Bunting”, “Rose Breasted
Grosbeak™ and “Red faced Cormorant” to generate attention
heatmaps/prototypes.

The assessment revealed that participants recognized
60.49% of the traits highlighted by PROMPT-CAM, sig-
nificantly outperforming TesNet and ProtoConcepts, which
achieved recognition rates of 39.14% and 30.39%, respec-
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Figure 19. Visualization of attention heads for pre-trained
DINO backbone variants. For correctly classified images of
“Red winged blackbird”, with PROMPT-CAM, both DINO ViT
b/16 and DINO ViT b/8 backbones can capture traits for classifi-
cation.

tively. These findings demonstrate PROMPT-CAM’s supe-
rior ability to emphasize and communicate relevant traits
effectively to human observers.

PROMPT-CAM on different backbones. We implement
PROMPT-CAM on multiple pre-trained vision transform-
ers, including DINO, DINOv2, and Bioclip. In Table 5,
we present the accuracy of PROMPT-CAM across various
datasets using different backbones: DINO (ViT-Base/16),
DINOvV2 (ViT-Base/14), and Bioclip (ViT-Base/16). For
each model, we visualize the top-4 attention heads on
the Bird Dataset in Figure 18. Notably, Bioclip achieves
higher accuracy on biology-specific datasets, which we at-
tribute to its pre-training on an extensive biology-focused
dataset, enabling it to develop a highly specialized fea-
ture space for these species. Additionally, we also evaluate
PROMPT-CAM on other DINO variations, ViT-Base/8 (ac-
curacy: 73.9%) and ViT-Small/8 (accuracy: 68.3%) on the
CUB dataset, achieving comparable performance and inter-
pretability to DINO ViT-Base/16 (accuracy: 71.9%) (shown
in Figure 19). This demonstrates PROMPT-CAM’s robust-
ness, flexibility, and ease of implementation across various
pre-trained vision transformer backbones and datasets.

Table 5. Accuracy of PROMPT-CAM on different backbones.
To show the flexibility and robustness, the accuracy of PROMPT-
CAM on multiple datasets is shown implemented on pre-trained
vision transformers, DINO, DINOv2 and BioCLIP.

Bird CUB Dog Pet Insects-2 Flowers Med.Leaf Rare Species

DINO 98.2 732 811 913 64.7 86.4 99.1 60.8
Ours DINOv2 982 741 813 927 70.6 91.9 99.6 622
BioCLIP 98.6 840 73.1 872 71.8 95.7 99.6 67.1

Taxonomical hierarchy trait discovery settings. In hier-
archical taxonomic classification in biology, each level in
the taxonomy leverages specific traits for classification. As
we move down the taxonomic hierarchy, the traits become
increasingly fine-grained. Motivated by this observation,

we trained and visualized traits in a hierarchical taxonomic
manner using the Fish Vista dataset.

We first constructed a taxonomic tree spanning from
Kingdom to Species. For the Family level, we aggregated
all images belonging to the diverse species under their re-
spective Family and performed classification to assign im-
ages to the appropriate Family. As shown in Figure 9, even
coarse traits, such as the tail and pelvic fin, were sufficient
to classify an image of the species “Amphiprion Melano-
pus” to its’ correct Family (attribute information found in
Fish Dataset).

At the Genus level, we create a new dataset for each
Family by grouping all images from the children nodes
of each Family and dividing them into classes by their re-
spective Genus. For instance, within the “Pomacentridae”
Family, finer traits like stripe patterns, pelvic fins, and tails
became necessary to classify its’ Genus accurately for the
same example image. Finally, at the Species level, all im-
ages from the children nodes of each Genus were used to
create a new dataset and were divided into classes. For the
example image in Figure 9, distinguishing between these
two species now requires looking at subtle differences such
as the pelvic fin structure and the number of white stripes on
the body for the same image from the “Amphiprion Melano-
pus” species. This hierarchical approach offers an exciting
framework to discover traits in a manner that is both evolu-
tionary and biologically meaningful, enabling a deeper un-
derstanding of trait importance across taxonomic levels.

G. More Visualizations

In this section, we show the top-4 attention maps triggered
by ground truth classes for correctly predicted classes,
for some datasets mentioned Appendix C, following the
same format of Figure 4. Each attention head of PROMPT-
CAM for each dataset successfully identifies different
and important attributes of each class of every dataset.
For some datasets, if the images of a class are simple
enough, we might need less than four heads to predict.
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