Robust Multi-Object 4D Generation for In-the-wild Videos

In this supplementary material, we provide additional in-
sights and details across several sections. Section 1 delves
deeper into the annotated MOSE-PTS dataset for point
tracking, outlining the annotation procedure and presenting
a difficulty analysis. Section 2 expands on the implementa-
tion and optimization process of our method. In Section 3,
we include additional visual comparisons of point motion
and analyze failure cases of our approach. Lastly, Section 4
offers further evaluation details for GenMOJO, with a par-
ticular focus on the design and execution of our user study
experiment.

1. More Details on MOSE-PTS

1.1. Annotation Procedure

We annotate point tracks for 20 videos selected from
MOSE [3], which is a complex and in-the-wild video
dataset designed for video object segmentation with sub-
stantial real-world occlusions.  Inspired by the TAP
dataset [4], we aim for generality by allowing annotators
to choose any object and any point they consider important,
rather than specifying a closed-world set of points to anno-
tate.

Given a video, annotation proceeds in two stages, de-
picted in Figure 1. First, annotators choose objects, es-
pecially moving ones, without regard to their difficulty in
tracking. Next, they choose points on each selected object
and track them. Finally, we review and mark low-quality
annotations for correction, repeating this correction proce-
dure as many times as needed. All annotators provided
informed consent before completing tasks and were reim-
bursed for their time.

Stage 1: Object Selection. For object selection, we be-
gan with the MOSE [3] video mask annotations, initially
identifying objects from these masks that predominantly
captured moving elements within the scene. We then re-
fined this selection by asking annotators to exclude overly
simple objects, such as small, stationary, or occluded ele-
ments that contribute minimally to the scene’s complexity.
To enhance the dataset’s challenge for point tracking, we
included additional moving objects by human eyes, priori-
tizing those that experience partial occlusion during move-
ment. This process ensured that the dataset maintained a

higher level of complexity, better suited for evaluating ro-
bust point-tracking algorithms.

Stage 2: Point Annotation. For each object selected in
the initial stage, annotators identified a set of five key points
on the first frame, including prominent features such as
eyes for animals and key poses for humans. To streamline
the annotation process, we used CoTracker2 [5] for point
initialization across frames. Annotators then refined these
points every alternate frame to ensure precise point track-
ing consistency with preceding frames, adjusting for mi-
nor shifts. In cases of occlusion, annotators marked frames
where points were no longer visible, preserving accurate
tracking continuity throughout the sequence.

1.2. Point Track Difficulty Analysis

To provide some insights into the difficulty of the annotated
point tracks in MOSE-PTS, we run CoTrackerV2 [5] and
CoTrackerV3 [6] on MOSE-PTS and report the Occlusion
Accuracy (OA; accuracy of occlusion prediction), Average
Delta (4§, fraction of visible points tracked within 1, 2, 4,
8, and 16 pixels, averaged over the 5 threshold values), and
Average Jaccard (AJ, a combination of tracking accuracy
and occludion prediction accuracy) [4]. For the evaluation
on TAP-Vid subsets, we report the values reported in the
original paper.

We find that in Table 1 that both versions of CoTracker
see up to 10 points of performance drop on MOSE-PTS
across all metrics. Even the most recent CoTrackerV3,
which has been trained on extra point annotations extracted
from real world data, see a noticeable drop in perfor-
mance on MOSE-PTS. This shows that MOSE-PTS is even
more challenging than the videos presented in TAP-Vid-
Kinetics [4]. We visualized our point track annotations in
the attached HTML page.

2. Implementation Details

In this section, we provide some extra details on imple-
mentation and optimization, as well as the hyper-parameter
choices for our experiments. We use the same set of hyper-
parameters for all DAVIS and MOSE videos in our experi-
ments.
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Figure 1. The point track annotation interface comprises four key components: (1) a visualization panel for reviewing and annotating
points, (2) a button panel for interaction, (3) an information panel displaying relevant details, and (4) a video playback panel for navigating
through frames. We also provide a simplified version of the annotation instructions to the right.

Table 1. Point tracking performance of CoTrackerV2 and Co-
TrackerV3 on various datasets. The performance of CoTracker
degrades by up to 10 points in MOSE-PTS, suggesting that it is
a much harder dataset compared to the subsets present in TAP-
Vid [4].

CoTrackerV2[5] CoTrackerV3[6]
Al 0 OA AJ 1) OA

RGB-Stacking 67.4 789 852 71.7 83.6 9l1.1
DAVIS 61.8 76.1 883 638 763 902
Kinetics 496 643 833 558 685 883

MOSE-PTS 404 56.1 755 46.7 63.6 779

Dataset

2.1. Static Gaussian Optimization

Pruning and Densification. Following [2, 7, 8], we prune
Gaussians with an opacity smaller than 0.01 or a scale larger
than 0.05. The densification is applied for Gaussians with
an accumulated gradient larger than 0.5 and max scaling
smaller than 0.05. Both pruning and densification are per-
formed every 100 optimization steps if the total number of
Gaussians is smaller than 20000. We impose this limit on
the number of Gaussians due to memory constraints. Unlike
traditional 3D Gaussian Splatting works, we do not reset the
opacity values during optimization, which yields better re-
sults.

Hyperparameters. For static Gaussian optimization, we
use the same set of hyperparameters from previous
works [2, 7, 8] and use a learning rate that decays from 1le =3
to 2¢~5 for the position, a static learning rate of 0.01 for the
spherical harmonics, 0.05 for the opacity, and 5e~2 for the
scale and rotation. We optimize for a fixed number of 1000
steps for all objects in the video using a batch size of 16
when calculating the SDS loss.

Running Time. On the A6000 GPU, the static 3D-lifting
process takes around 5.63 minutes for the 1000 steps, com-
parable to what was reported in previous works.

2.2. Dynamic Gaussian Optimization

Deformation Network. We follow previous works [2, 7]
and use a Hexplane [1] backbone representation with a 2-
layer MLP head on top to predict the required outputs. We
set the resolution of the Hexplanes to [64, 64,64, 0.87] for
(z,y, z,t) dimensions, where 7" is the number of frames in
the input video sequence. This is the same setting used in
the baselines, and we keep this setting to ensure fair com-
parisons.

Hyperparameters. The learning rate of the Hexplane is
set to 6.4e~*, and the learning rate of the MLP prediction
heads is set to 6.4e 3 [2, 7]. We optimize for a 35 - T steps
with a batch size of 8, where T is the number of frames in
the video. Like previous works, we sample 4 novel views



Table 2. Additional Video to 4D Scene Generation Ablations.
We augment DreamScene4D with DepthCrafter (+DC) and disal-
low color changes (-SH).

MOSE DAVIS
Method
CLIPT PSNR{1 LPIPS| CLIPt PSNRT LPIPS |
DreamScene4D 85.16 22.98 0.169 84.13 21.73 0.163
DreamScene4D (+DC)  85.22 23.01 0.169 84.15 22.07 0.163
GenMOIJO (-SH) 85.37 24.25 0.168 84.16 23.17 0.164
GenMOJO (Full) 85.41 25.56 0.168 84.17 23.51 0.163

per frame in the batch to calculate the SDS loss. We use the
AdamW optimizer to optimize the deformation parameters.

Running Time. The running time is heavily dependent on
the length of the video, as the number of optimization steps
is dependent on the total number of frames, as well as the
number of objects. For reference, on the A6000 GPU, a
video with 32 frames with 3 objects takes around 74 min-
utes. DreamScene4D [2] is roughly 10% slower as the opti-
mization process needs to be done independently, but Gen-
MOJO requires 15% more VRAM on a GPU due to the joint
splitting procedure requiring Gaussians of all objects to be
kept in memory.

3. Additional Results

3.1. Point Motion Visualizations

We visualize some comparisons of the point tracking be-
tween Shape of Motion [9], GenMOJO, and CoTrack-
erV3 [6] in Figure 2. We can see the GenMOJO produces
more accurate point tracks compared to other optimization-
based methods like Shape of Motion and DreamScene4D.
CoTrackerV3 produces very accurate point tracks when it
succeeds, but also produces tremendous errors when it fails,
as the error can be unbounded.

3.2. Additional Ablations

We conduct additional evaluations by replacing DepthAny-
thing in DreamScene4D with DepthCrafter. Furthermore,
we also ablate the effects of enabling and disabling SH co-
efficient changes on novel view synthesis. As shown in
Table 2, it leads to a minor improvement, as DepthCrafter
sometimes provides better depth priors. However, without
joint object optimization, DreamScene4D cannot fully re-
cover from erroneous depth estimates.

We also include a visualization of the Gaussian trajecto-
ries with and without allowing the colors of the Gaussians
to change over time in Figure 3.

3.3. Failure Cases

We visualize some failure cases corresponding to the limi-
tations section in the main text in Figure 4. We envision that
as better-performing foundational models for novel-view

synthesis and video depth estimators are released, Gen-
MOIJO will also become more robust.

4. Evaluation Details
4.1. Novel View Synthesis

We first recenter the Gaussians based on the median
(x,y,2), then render from the following combination of
(elevation, azimuth) angles: (0, 30), (0, —30), (30, 0),
(=30, 0), where (0, 0) corresponds to the front view. These
novel view renders are then compared with the reference
view at each timestep to obtain the CLIP and LPIPS scores.
We then average the scores to obtain the final score.

4.2. User Study

For the user study, we consider the videos in MOSE-PTS.
For each method, we render from the reference view, as well
as 2 novel views corresponding to the input video. We use
Amazon Turk to outsource evaluations and ask the work-
ers to compare the 2 sets of 3 videos with the input video.
Each set of videos is reviewed by 30 workers with a HIT
rate of over 95% for a total of 900 answers collected. The
whole user preference study takes about 89s per question
and 22.25 working hours in total.

To filter out poor quality responses, we intentionally
included “dummy” questions where one set of renders
was replaced by renders from non-converged optimization
where the visual quality is noticeably worse, and used these
“dummy” questions to filter out workers who submitted re-
sponses that did not pass these questions. We additionally
filtered out workers who submitted the same answer for all
the videos. For every worker whose answers were rejected,
we assigned new ones until the desired number of answers
had been collected.

We include the full instructions shown to the workers
below:

Please read the instructions and check the videos
carefully.

Please take a look at the reference video on the
top. There are 2 sets of rendered videos (A and
B) for this reference video: one rendered from
the original viewpoint, and two rendered from
other viewpoints. Please choose the set of videos
that looks more realistic and better represents the
original video to you. The options (A) and (B)
correspond to the two sets of videos, as denoted
in the captions under the videos.

To judge the quality of the videos, consider the
following points, listed in order of importance:

1. Do the objects in the rendered videos corre-
spond to the reference video?
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Figure 2. Point Tracking Comparisons. In complex MOSE videos, Shape of Motion [9] and CoTracker [6] point tracks can drift off the
object of interest, while GenMOJQ’s point tracks are anchored to the object thanks to the object priors.
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Figure 3. 4D Gaussians in red boxes do not maintain on the rear
of the car under temporal lighting changes with fixed Gaussian
colors (top row).

2. Do the objects clip or penetrate each other in
the rendered videos?

3. Does the video look geometrically correct (e.g.
not overly flat) when observed from other
viewpoints?

4. Are there any visual artifacts (e.g. floaters,
weird textures) in the rendered videos?

Please start from the first criteria to select the bet-
ter set of renderings. If they are equal, please use
the next criteria. If they are equal for all 4 points,
please select Equally Preferred.

Please ignore the background in the original
video.

A GUI sample of a survey question is also provided in
Figure 5 for reference.

4.3. Multi-Object DAVIS Split

We list the multi-object DAVIS video names that were used
to perform evaluations:

boxing-fisheye, car-shadow, crossing,
dog-gooses, dogs—-Jjump, gold-fish,
horsejump-high, india, 1ibby, judo,
loading, pigs, schoolgirls,
scooter-black, soapbox
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Figure 4. Failure cases. Top: Erroneous depth predictions can cause entities to jitter along the depth dimension. Bottom: View synthesis
diffusion model failures result in degenerate textures in unseen viewpoints.

Shortcuts | Please take a look at the full instructions and the reference video on the top. There are 2 sets of rendered videos (A and B) for this reference video: one rendered from the original viewpoint, and two rendered from other viewpoints. Please choose the set of videos that better represen.
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Figure 5. User survey interface. A GUI sample of what an Amazon Turk worker sees for the user study.



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

Ang Cao and Justin Johnson. Hexplane: A fast representation
for dynamic scenes. In CVPR, 2023. 2

Wen-Hsuan Chu, Lei Ke, and Katerina Fragkiadaki. Dream-
scenedd: Dynamic multi-object scene generation from
monocular videos. In NeurIPS, 2024. 2, 3

Henghui Ding, Chang Liu, Shuting He, Xudong lJiang,
Philip HS Torr, and Song Bai. Mose: A new dataset for video
object segmentation in complex scenes. In Proceedings of
the IEEE/CVF International Conference on Computer Vision,
pages 20224-20234, 2023. 1

Carl Doersch, Ankush Gupta, Larisa Markeeva, Adria Re-
casens, Lucas Smaira, Yusuf Aytar, Joao Carreira, Andrew
Zisserman, and Yi Yang. Tap-vid: A benchmark for tracking
any point in a video. In NeurlIPS, 2022. 1,2

Nikita Karaev, Ignacio Rocco, Benjamin Graham, Natalia
Neverova, Andrea Vedaldi, and Christian Rupprecht. Co-
tracker: It is better to track together.  arXiv preprint
arXiv:2307.07635,2023. 1, 2

Nikita Karaev, Iurii Makarov, Jianyuan Wang, Natalia
Neverova, Andrea Vedaldi, and Christian Rupprecht. Co-
tracker3: Simpler and better point tracking by pseudo-
labelling real videos. arXiv preprint arXiv:2410.11831, 2024.
1,2,3,4

Jiawei Ren, Liang Pan, Jiaxiang Tang, Chi Zhang, Ang Cao,
Gang Zeng, and Ziwei Liu. Dreamgaussian4d: Generative 4d
gaussian splatting. arXiv preprint arXiv:2312.17142,2023. 2
Jiaxiang Tang, Jiawei Ren, Hang Zhou, Ziwei Liu, and Gang
Zeng. Dreamgaussian: Generative gaussian splatting for effi-
cient 3d content creation. /CLR, 2024. 2

Qiangian Wang, Vickie Ye, Hang Gao, Jake Austin, Zhengqi
Li, and Angjoo Kanazawa. Shape of motion: 4d reconstruc-
tion from a single video. arXiv preprint arXiv:2407.13764,
2024. 3,4



	More Details on MOSE-PTS
	Annotation Procedure
	Point Track Difficulty Analysis

	Implementation Details
	Static Gaussian Optimization
	Dynamic Gaussian Optimization

	Additional Results
	Point Motion Visualizations
	Additional Ablations
	Failure Cases

	Evaluation Details
	Novel View Synthesis
	User Study
	Multi-Object DAVIS Split


