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In this supplemental document, we provide additional results and details in support of our findings in the main manuscript.
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1. Additional Details for the Proposed Method
1.1. Simplified Disney BRDF Model

We use the simplified Disney BRDF model [8] having parameters: bi, roughness σi, and metallic mi. The BRDF model has
three major terms: distribution function D, Fresnel term F , and geometry attenuation term G to represent realistic specularity
as follows:

fi(i,o) =
1−mi

π
bi +

D(h;σi)F (o,h;bi,mi)G(i,o,n;σi)

4(n · i)(n · o)
. (1)

We compute normal distribution function D using a Spherical Gaussian function:
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2
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We use Schlick’s approximation for the Fresnel term:

F (o,h;bi,mi) = F0 + (1− F0) (1− o · h) 5 (3)

where F0 = 0.04(1−mi)+mibi. The geometry attenuation term is computed by multiplication of two GGX functions [7]:

G(i,o,n;σi) = GGGX(i · n)GGGX(o · n), (4)

where the GGX function is defined as follows:

GGGX(z) =
z

(1− α)z + α
, α =

(1 + σi)
2

8
(5)

1.2. 2D Gaussian Splatting

We use 2D Gaussians [4] with learnable geometric parameters: {p, t, s}. Each 2D Gaussian is defined on the local tangent
frame in world coordinate, which is parameterized as:

P(a, b)= p+ sataa + sbtbb =

[
ts p
0 1

]
(a, b, 1, 1)

⊤
, (6)

where p is the location of Gaussian center, t = [ta, tb, tc] ∈ R3×3 denotes the rotation matrix, and s = diag (sa, sb, 0) ∈
R3×3 denotes the scaling matrix of 2D Gaussian. tc denotes the surface normal of 2D Gaussian. Then, 2D Gaussian-filtered
distance value is computed as:

G(a) = exp

(
−a2 + b2

2

)
, (7)

where a = (a, b) denotes a point that is intersected with the ray r(u) coming from corresponding pixel u and Gaussian. A
point a is defined on the local tangent frame in ab space. Then, we render an image with following equation:

I(u) =

M∑
i=1

LiαiGi(r(u))

i−1∏
j=1

(1− αjGj(r(u))) , (8)

where u ∈ U is a pixel, M is the number of Gaussians projected onto pixel u. {Li}Mi=1 and {αi}Mi=1 are the radiance and
opacity values of the depth-sorted i-th Gaussian, respectively.

1.3. Loss Functions

We optimize Gaussian parameters G and basis BRDF parameters R by minimizing the following loss function:

L = Lrender + λgeomLgeom + λmaskLmask + λsparseLsparse. (9)



• Lrender is the specular-weighted rendering loss consisting of l1 loss and SSIM loss between the reconstructed image I and
the observed image I

′
as follows:

Lrender =
1

|U |
∑
u∈U

H(u) ((1− λs)L1(u) + λsLSSIM(u)) , (10)

where λs is a balancing weight and H(u) is a specular weight map.
• To promote stable optimization, we incorporate geometric regularization term Lgeom following the approach in 2DGS [4],

specifically focusing on depth distortion and normal consistency. Depth distortion loss aims to compact the Gaussian splats
by minimizing the depth distance between ray-splat intersections. Normal consistency loss aligns the 2D splats with the
object’s surface to approximate a smooth surface. The geometric regularization is formulated as:

Lgeom=
∑
i,j

titj |zj − zi|+
∑
i=1

ti(1− nT
i ñi) (11)

where i indexes the splats intersected splats along the ray, ti = αiGi(r(u))
∏i−1

j=1 (1− αjGj(r(u))), zi is the depth of the
splat, ni is the normal of the rendered normal image, and ñi is the normal computed from the rendered depth image.

• Lmask is the cross entropy loss between rendered mask M and ground-truth mask M
′
.

• To obtain spatially separated interpretable basis BRDFs, we apply sparsity regularizer Lsparse with Gaussian weights and
weight images.

1.4. Point Initialization

For the synthetic dataset, we utilize masked-based point sampling for the initial point cloud. We sample 3D points uniformly
and project these points on the image plane to estimate points that fall within masked region [10]. We employ COLMAP
output as a point cloud initialization for real-world photometric images. This point cloud initialization enables stable and
accurate reconstruction of 3D geometry.

1.5. Basis BRDF Initialization

For basis BRDF initialization, we perform k-means clustering to obtain the initial base color for each basis. We utilize all
input pixel values as input and compute the centers of clusters with the number of initialized basis BRDFs. We set bi as
center of cluster, σi = 0.5 and mi = 0.0. This basis BRDF initialization enables efficient and accurate reconstruction of
spatially-varying BRDFs with interpretable basis BRDFs. We obtain similar reconstruction results for two initial metallic
parameters (0.2, 0.0): relighting PSNR is (31, 32) dB, and normal MAE is (9.7, 9.8) degrees for the synthetic dataset.

1.6. Adaptive Density Control

We follow the adaptive density control policy of 2D Gaussian splatting [4]. We repeat point upsampling and pruning based
on the gradient of Gaussian parameters to achieve high-quality reconstruction. To optimize stable geometry and interpretable
basis BRDFs efficiently, we increase the densification interval to 500.

1.7. Scheduling

We optimize Gaussian and basis BRDF parameters simultaneously without sparsity regularizers before 5000 iterations. We
apply Gaussian weight sparsity regularization after 5000 iterations and weight image sparsity regularization after 9000 itera-
tions. Weight image regularization constraints the sparsity of basis BRDF weights stronger than Gaussian weight regulariza-
tion. Basis merging and removal occur at 500-step intervals, beginning at 6000 steps.

1.8. Runtime

Reconstruction takes 27 min. without sparsity regularizers (Sec.3.1 in the main paper) and 33 min. with sparsity regularizers
(Sec.3.2 in the main paper).

2. Dataset
2.1. Synthetic Photometric Dataset

We test our method on synthetic photometric dataset, following the configuration of mobile flash photography [6]. We ren-
dered 4 complex scenes of multiple objects with Blender using mesh and image texture data from IRON [9] and Objaverse [3].
We rendered 300 view images with co-located point lights and used 200/100 views for training/testing, respectively. We also
render ground-truth normal images for normal evaluation.



2.2. Real-world Photometric Dataset

We test our method on real-world photometric dataset, which is captured by a mobile phone with flashlight. We utilize
Proshot application to capture raw images in dng format. We fix exposure, focal length, ISO and white balance to capture
images with consistent settings. We perform checkerboard calibration to obtain camera intrinsic parameters and rectify
distorted images. We also capture color checker images to estimate white balance and flash light intensity simultaneously.
Chrome ball calibration [5] is performed to estimate the accurate position of flash light, assuming a point light source. We
treat flash light position as a fixed parameter. Flash light intensity is modeled as a fixed scalar value with the distance-aware
light fall-off term.

3. Additional Ablation Study

Synthetic photometric dataset
Method PSNR ↑ SSIM ↑ LPIPS ↓ MAE ↓

Proposed 31.78 0.9754 0.0234 9.81
w/o spec 30.82 0.9748 0.0299 10.29

w/o softmax 30.19 0.9720 0.0381 10.17
w/o Lsparse 34.13 0.983 0.0180 9.85
w/o Lmask 32.51 0.9790 0.0186 11.05

basis 9 31.51 0.9727 0.0257 10.21
basis 15 32.13 0.9744 0.0242 9.82

Table 1. Quantitative comparison of ablation studies for a synthetic photometric dataset. We achieve the highest reconstruction quality
without sparsity loss, however it produces non-interpretable basis BRDFs and weight maps. Our proposed method enables reconstruction
of both high-fidelity and interpretable basis BRDFs simultaneously.

3.1. Specular-weighted Photometric Loss

We evaluate the importance of specular-weighted photometric loss of our method. Table 1 shows that a specular-weight map
improves both image and normal reconstruction quality. Especially, the specular region is weighted by potentially-specular
weight map, resulting in an accurate reconstruction of specularity.

3.2. Softmax Function with Temperature

We evaluate the impact of softmax function with low temperature. Table 1 and Figure 1 show that high temperature T = 1,
results in non-interpretable basis BRDFs and non-intuitive weight images. We employ low temperature softmax function to
optimize spatially separated weight maps with interpretable basis BRDFs, enabling intuitive scene editing.

GT image 

Basis BRDFs and imagesRendered image

Figure 1. Impact of softmax function with low temperature. Low temperature softmax function results in interpretable basis BRDFs
and images. We employ T = 0.0125 in our experiment.



3.3. Sparsity Regularizer

Table 1 shows that sparsity regularizer downgrades the reconstruction quality while it produces interpretable basis BRDFs.
Without sparsity regularizer, optimized basis BRDFs are non-interpretable, and weight images are not spatially separated.

3.4. Mask Loss

Table 1 shows that we achieve high-quality reconstruction results without mask loss. However, we obtain non-interpretable
basis BRDFs and weight maps as shown in Figure 2. Mask loss regularizes Gaussians to align with the object surface that
edge does not include the color of the background. We apply mask loss to reconstruct more interpretable basis BRDFs and
accurate surface normal.
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Figure 2. Impact of the mask input. Without mask loss, weight maps are non-intuitive, and the edge is unclear.

3.5. Number of Initialized Basis BRDFs

We evaluate the impact of the number of initialized basis BRDFs. We test our method on complex scenes with multi-object
which need sufficient basis BRDFs. Table 1 and Figure 3 show that using a small number of basis BRDFs results in low
reconstruction quality and non-interpretable basis BRDFs.

Basis BRDFs and imagesRendered image

Figure 3. Impact of the number of initialized basis BRDFs. With a small number of initialized basis BRDFs, basis BRDFs are non-
interpretable, and weight maps are not spatially separated. We utilize N = 12 in our experiment.

3.6. Threshold for Basis BRDF Merge

Figure 4 shows the result of optimized basis BRDFs and images depending on the merge threshold τmerge. If we set a large
value for the threshold τmerge, basis BRDFs are not merged when they are non-intuitive with duplicates. If we set a small
value for the threshold τmerge, basis BRDFs are merged when they are not similar. We find appropriate merge threshold τmerge
for each complex scene to estimate optimal basis BRDFs and weight images.



Basis BRDFs and imagesRendered image

Figure 4. Importance of merge threshold. Merge threshold τmerge directly affects the interpretability and scalability of basis BRDFs. If
τmerge is too large, distinguishable basis BRDFs are merged excessively. If τmerge is too small, similar basis BRDFs are not merged. We
utilize τmerge = 0.4 for this scene.

3.7. Thresholds for Basis BRDF Removal

Figure 5 shows the result of optimized basis BRDFs and weight images depending on the removal thresholds τremoval-weight
and τremoval-number. τremoval-weight determines whether weight image pixels are contributing to the reconstruction. τremoval-number
determines whether basis BRDFs are significant depending on the portion between valid weight pixels and total pixels. If
τremoval-weight is too small, many pixel are considered valid with non-interpretable basis BRDFs. If τremoval-number is too big,
necessary basis BRDFs are removed.

Basis BRDFs and imagesRendered image

Figure 5. Importance of removal thresholds. Removal thresholds τremoval-weight and τremoval-weight determine which unnecessary basis
BRDF to be removed. With small τremoval-weight, unnecessary basis BRDFs are not removed, resulting in non-interpretable basis BRDFs. If
τremoval-number is too big, necessary basis BRDFs are removed, and reconstruction fails. We utilize τremoval-weight = 0.1 and τremoval-number =
0.005 for this scene.



4. Additional Discussions
4.1. Shadow Computation by Occlusion

Our method utilizes captured images with multi-view flash photography to collect sufficient light-angular samples and neglect
shadow by occlusion, which does not exist when light and camera are co-located. We achieve high-fidelity reconstruction
of geometry and spatially-varying BRDFs even on real-world photometric dataset captured by a mobile phone with the
flash light. However, our method can be further improved with shadow computation by rendering a shadow image [1]. By
multiplying a shadow image and a rendered image, we can render a photo-realistic image with shadow handling.

4.2. Global Illumination

We only consider direct illumination from a point light source, neglecting global illumination. Global illumination may be
handled by employing residual MLPs or ray tracing. This would enable to handle indirect illumination and inter-reflection
between specular objects, recovering accurate geometry and spatially varying BRDFs.

4.3. Reconstruction under Environment Maps

Our method supports differentiable forward rendering with arbitrary environmental lighting as shown in Fig. 1(d) in the main
paper. Thus, environment-light inverse rendering is possible in principle. However, challenges exist: ambiguity of unknown
illumination and BRDF, and the complexity of environment map optimization, where learned priors may help.

4.4. Similarity of Close Gaussians

We observed that spatially neighboring Gaussians have similar normals and weights thanks to our normal consistency loss:
The k = 3-nearest-neighbor Gaussians have the low standard deviations of 24.06◦ for normals and 0.21 for weights. For
qualitative results, we refer to Fig.5 and Fig.6 in the main paper.

4.5. Opacity Distribution of Gaussians

For the scene of Fig. 8, 70% of Gaussians have opacity values in the range [0.9, 1.0] and are aligned with the surface within
a average distance of 0.016. The objects are located inside of the sphere with radius 2.

5. Additional Results
5.1. Novel-view Relighting Results

We compare our method with IRON [9], DPIR [2], GS3 [1] in quantitative manner. Table 2 demonstrates that we achieve the
highest accuracy with surface normal estimation and the second highest accuracy with novel view relighting. We focus on
reconstructing interpretable BRDFs and geometry by leveraging spatial coherence for sufficient light-view angular sampling,
whereas GS3 prioritizes relighting by employing residual networks with inaccurate geometry. Our method achieves both
accurate geometry and interpretable basis BRDF reconstruction that enable high-fidelity novel view relighting and intuitive
scene editing.

Synthetic photometric dataset
Method PSNR ↑ SSIM ↑ LPIPS ↓ MAE ↓
IRON 24.09 0.8714 0.0924 15.71
DPIR 26.87 0.954 0.0594 17.04
GS3 38.93 0.9944 0.0038 15.28
Ours 31.78 0.9754 0.0234 9.81

Table 2. Comparison between our method and other baselines. We achieve high-fidelity novel-view relighting results with accurate
geometry reconstruction.

5.2. Point Relighting Results

We achieve realistic relighting results with a moving point light source as shown in Figure 6.

5.3. Reflectance Editing Results

We achieve intuitive reflectance editing with interpretable basis BRDFs in Figure 7.
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Figure 6. Relighting with point light sources. We render 4 complex scenes with a moving point light source.
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Figure 7. Intuitive reflectance editing. We efficiently edit reflectance by modifying parameters of basis BRDFs.



5.4. Additional Results with Synthetic Photometric Dataset

Figure 8, Figure 9, Figure 10 and Figure 11 show visualizations of 4 complex scenes in a synthetic photometric dataset. Our
method reconstructs accurate geometry and interpretable basis BRDFs. We provide the visualization of a rendered image,
estimated normal, depth map, basis BRDFs, basis BRDF images, and basis BRDF weight images. It demonstrates that
our method successfully recovers complex geometry and spatially-varying BRDFs with interpretable basis BRDFs. Weight
images are spatially separated which enables intuitive scene editing.

Basis BRDF images

Rendered imageGT Normal Depth

Basis BRDF weight maps

Basis BRDFs

Figure 8. Reconstruction results of scene #1 on the synthetic photometric dataset.
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Figure 9. Reconstruction results of scene #2 on the synthetic photometric dataset.
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Figure 10. Reconstruction results of scene #3 on the synthetic photometric dataset.
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Figure 11. Reconstruction results of scene #4 on the synthetic photometric dataset.



5.5. Additional Results with Real-world Photometric Dataset

Figure 12 and Figure 13 show a visualization of a complex scene in a real-world photometric dataset. Our method achieves
accurate reconstruction of geometry and interpretable basis BRDFs from multi-view flash images.

Basis BRDF images

Rendered imageGT Normal Depth

Basis BRDF weight maps

Basis BRDFs

Figure 12. Reconstruction results of scene #1 on the real-world photometric dataset.
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Figure 13. Reconstruction results of scene #2 on the real-world photometric dataset.
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