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8. Appendix A. — Content-Style Tradeoff
In Sec. 3 we study the relationship between content and
style and experiment with various conditioning settings. In
this section we expand on our evaluation set and on addi-
tional experiments regarding B-LoRA [12].

8.1. Evaluation Set
Our initial evaluation set contains 10 artistic styles: Beat-
rix Potter, Claude Monet, Egon Schiele, John Singer Sar-
gent, Pablo Picasso, Studio-Ghibli, Utagawa Kuniyoshi,
Vincent Van-Gogh, Winslow Homer, and Xu Beihong. For
each style, we use five “Easy” and five “Complex” prompts
for evaluation: “A bull moose,” “A grizzly bear,” “A dragon
flying in the sky,” “A portrait of a woman,” “A tabby cat sit-
ting,” (Easy) and “A girl wearing a black and white striped
shirt riding a bull moose in the Alaska wilderness,” “A fam-
ily of panda bears wearing kimonos and sharing some tea,”
“Two dragons, a green one and a red one, flying in a purple
sky,” “A man wearing sunglasses and a woman watching
the sunset from a mountain top,” “A ginger tabby cat riding
a bicycle in Amsterdam next to a river” (Complex).

In Sec. 6 we extend our evaluation set with 22 addi-
tional styles and 10 additional prompts. The additional
styles are: Pixar, Pixel Art, Edvard Munch, Franz Marc,
John James Audubon, Oswaldo Guayasamin, Henri Ma-
tisse, Wassily Kandinsky, Ilya Repin, Gustav Klimt, Voxel
Art, Vector Art, Anime, Henri De Toulouse-Lautrec, Yoshi-
taka Amano, Cyberpunk, Concept Art, Low Poly, Gustav
Courbet, Paul Cézanne, Jean Metzinger and Georges Seu-
rat. The additional prompt are: “An old TV set,” “A colorful
fishbowl,” “A house in a village,” “A bartender leaning on
his bar,” “A brown horse galloping” (Easy) and “A robot
wearing a fedora holding a flower,” “A humpback whale
floating in the sky carried by large colorful balloons,” “A
fantasy castle with blue pointy rooftops located on a hill in
a green valley,” “An orc and a blond wood-elf sitting in a
tavern drinking beer as friends,” “Gandalf the Gray riding
a horse while casting a spell with his wooden staff” (Com-
plex).

To generate the evaluation set we use 4 randomly chosen
seeds: 10, 20, 9787, and 140592. For text-only generation
we use all four seeds, for Canny conditioning we use 10 and
9787, and for Depth conditioning we use 20 and 140592.

8.2. B-LoRA Experiments
In Sec. 3 we investigate the content-style tradeoff by using
StyleAligned [17]. We expand this study for B-LoRA us-

ing the same evaluation set. Unlike StyleAligned, B-LoRA
requires training residual weights prior to inference, which
prevents applying stylization over a random set of layers
for each evaluated image. Instead, we show the tradeoff
between content and style using our balancing strategy and
compare it to B-LoRA. Following Sec. 3 we use Dino [5]
and Clip [27] embeddings to evaluate style and content, re-
spectively, over various layer combination choices for both
text conditioning and structure conditioning experiments.

We report both Qualitative and Quantitative evaluations
in Fig. 10. As illustrated, our strategy balances content and
style for mutual conditioning. In the case of ‘Text Condi-
tioning’ (left) we can see that choosing style sensitive layers
by our layer ranking yields a dramatic improvement in style
over B-LoRA without sacrificing content, even when bas-
ing the stylization on only five self-attention layers. In this
case we observe that choosing 20 layers yields a good bal-
ance between content and style. In the case of ‘Structure
Conditioning’ (right) using a structure control map yields
more stability in content even for a high number of styliza-
tion layers. For this reason, we find that choosing 40 layers
yields the optimal balance between content and style.

In both cases we observe that using excessive style may
lead to issues caused by content drift from the style image.
When using a structure map (image D. in Fig. 10) the im-
pact can be marginal but when using a text condition alone
(image A. in Fig. 10) we can sometime lose the content of
the image overall.

9. Appendix B. — Analysis

9.1. Painting Collections

Our style and content analysis is conducted over five col-
lections each. For our style analysis we use five dif-
ferent objects and constrain their structure with a Canny
map: Car, House, Rabbit, Bottle, and Chair. We generate
10 image clusters by various artistic styles: Vincent Van-
Gogh, Claude Monet, Georges Seurat, Paul Signac, Edvard
Munch, Winslow Homer, John Singer Sargent, Edward Hop-
per, Paul Cézanne, and Berthe Morisot. We choose these
styles as they show variance in color and texture patterns
but all have relatively realistic geometric style. The entire
collections for Car and Rabbit are presented in Fig. 33.

The geometric sensitivity analysis was focused on limit-
ing content conditionals from layers sensitive to geometric
style. We choose five different objects: Cat, Wolf, Cow,
Shark, and Horse. We choose to concentrate on animals as



Figure 10. Content-Style Tradeoff - B-LoRA. Investigating the content-style tradeoff for B-LoRA vs. balancing using various number of
stylization layers using our balancing strategy. As can be seen, using our strategy leads to balanced results for both ‘Text’ and ‘Structure’
conditioning and improves the overall generated image quality over imbalanced B-LoRA.

they tend to have more fluid interpretations in art paintings
which is key for varying geometric style through the collec-
tions. We do not use a conditioning map to constrain struc-
ture as geometric style freedom is dependent on structure
freedom. We generate 10 image clusters using the following
styles: Jean-Michel Basquiat, Egon Schiele, Franz Marc,
Vincent Van-Gogh, Ernst Ludwig Kirchner, Henri Matisse,
Jean Metzinger, Edvard Munch, Pablo Picasso, and Uta-
gawa Kuniyoshi. The entire collections of Cat and Wolf are
presented in Fig. 34 and Fig. 35, respectively, in both their
color version and black and white version which was used
in the analysis.

9.2. Layer Rankings

Using our analysis method results with a ranking for each
layer at each timestep. To better understand the ranking
choices we show the mean and standard deviation of the
layer rank over timesteps (Fig. 11). As can be seen, both
style and geometry show a high correlation with the Up
layers of the denoising UNet, while style seems to show
a significant correlation also with Down layers.

We present an example of a choice of 30 layers of Key
layers for both style and geometry in Fig. 12. As can be seen
the majority of layers show consistency over time while
some layers change on various timesteps.

9.3. Style Layers Ablation Study - λS

In Sec. 3 of the main manuscript, we examine the trade-off
between style and content in conditional image generation
and provide an initial evaluation of the effectiveness of ap-
plying stylization to a subset of self-attention layers, as de-
termined by our analysis method. In this subsection, we fur-
ther explore our method’s ability to identify style sensitiv-
ities by assessing the performance of layers marked as not
style-sensitive. We compare their impact to both random
selection and our previous results from Sec. 3. To achieve
this, we generate the evaluation set described in Sec. 3 us-
ing different subset sizes of style layers. However, instead
of applying stylization to the k-most style-sensitive layers,
we now apply it to the k-most insensitive layers.

Our experimental findings are illustrated in Fig. 13.
Similar to the approach in Sec. 3 of the main manuscript,
we provide quantitative evaluations for both style similar-
ity (top left) and content similarity (top right), alongside a
qualitative example for visual demonstration.

As shown in the top left plot, applying stylization to
layers identified as not style-sensitive (blue graph) results
in a significant reduction in the style similarity of the
generated images compared to stylization using the style-
sensitive layers (green graph). Furthermore, applying styl-
ization to these layers leads to lower style similarity than
random layer selection, reinforcing the effectiveness of our
method in correctly identifying both style-sensitive and



(a) Style sensitivity - average rank over time (b) Geometric sensitivity - average rank over time

(c) Style sensitivity - standard deviation over time (d) Geometric sensitivity - standard deviation over time

Figure 11. Average Layer Rank. We show the average layer grade over all time steps for style and content sensitivity analysis. The top
row depicts the first instance of each plot, and the bottom row duplicates them. As can be seen, various Up layers are important for both
general style and geometric style. While geometric style seems to be more reliant on Up layers, some general style aspects seem to rely on
Down layers. (Down, Middle and Up layers are divided by gray colored areas in the plot from left to right, respectively.)

(a) Style sensitive layer choice (b) Geometry sensitive layer choice

Figure 12. Layer Decision Example. We show an example of the layer choice for λS = 0.43 using 30 Key layers for style (left) and
geometry (right). As can be observed the majority of layers show consistency over time while a some layers change for different timesteps.



Figure 13. Style Layers Ablation. Ablation study for the ability of our sensitivity analysis method. We investigate and compare the
method’s ability to identify both style-sensitive and style-insensitive layers by using both layer rankings for stylization, where using insen-
sitive layers is marked in blue and using sensitive layers is marked in green. We show quantitative results (top) and compare both scenarios
to a random layers selection (red) and show a visual example for demonstrative purposes (bottom).

style-insensitive layers. Notably, these insensitive layers
appear to be entirely unrelated to style, as stylizing them
negatively impacts the overall stylization quality. Addition-
ally, using the insensitive layers causes a slower increase
in style similarity, which only starts to improve around
(E.), when the style-sensitive layers take effect. Observ-
ing the content similarity plot (top-right), we can confirm
our hypothesis that injecting style information into style-
insensitive layers (blue) is not only ineffective for style sim-
ilarity but also degrades content similarity. This degradation
results in lower content similarity compared to both style-
sensitive layers (green) and randomly selected layers (red.)

The qualitative impact of these findings is visually
demonstrated in the image sequence at the bottom of
Fig. 13. This sequence compares the interpolation effect of

applying λS on style-sensitive layers (top row) versus style-
insensitive layers (bottom row). Each column (A.−F.), cor-
responding to points in the quantitative graphs, represents
an increasing λS value. Columns (A) and (F) show gen-
erated images for (A) no image style conditioning and (F)
full layer style conditioning, both presenting a suboptimal
result. The following observations can be made: (B) When
using only 10 style-sensitive layers, the generated image al-
ready exhibits strong style representation while maintaining
content integrity, whereas using style-insensitive layers re-
sults in no noticeable stylization effect. (C) Utilizing 14
sensitive layers maintains the previous quality, whereas us-
ing insensitive layers introduces content artifacts without
achieving style alignment, likely due to injecting style in-
formation into content-related layers. (D) Applying 30 sen-



Figure 14. Geometric Style Ablation. Ablation study for our geometric scaling factor. We demonstrate the effect of λscale, λmid, λdown

on the geometric style of the generated image. As can be seen, reducing results in a gradual decrease of fine details control and enables
the model to gradually increase its geometric freedom which peaks around λdown value of 0.15. However, reducing control by lowering
λscale (top row) or λmid (middle rows) results in abrupt loss of of general mask details around the value of 0.3, which leads to neglecting
the content condition overall.

sitive layers further improves both style and content align-
ment, while using insensitive layers results in some style
improvements but also introduces content artifacts. (E)
With 45 layers, stylization using our identified sensitive lay-
ers begins to introduce content artifacts, while using insen-
sitive layers finally achieves reasonable style alignment as
style and content-related layers start to blend in both cases.

9.4. Geometric Style Ablation Study - λT

Following our analysis in Sec. 5, we conduct an ablation
study to investigate the impact of the residual outputs of
ControlNet on the generated images. ControlNet fine-tunes
a copy of the denoising UNet encoder and extracts its out-
puts from the Down and Middle layers. These residuals
are subsequently injected into the main UNet during gen-
eration at the Up and Middle layers, respectively. In our
ablation study, as shown in Fig. 14, we examine the effect
of each of these layers and compare their influence to that
of the default ControlNet conditioning scale, which reduces
the conditioning effect on the output image. We define the
parameters λscale, λdown, and λmid to control the default
conditioning scale, the Down layer residuals, and the Mid

layer residuals, respectively. The default parameter λscale

limits the conditioning effect by scaling the residuals, while
λdown and λmid restrict conditioning by applying it over
fewer timesteps. Additionally, since some residuals are in-
jected through convolution layers that are not analyzed by
our method, we introduce λconvs to similarly limit the in-
fluence of convolutional-based layers.

As observed in Fig. 14, each layer group exerts a dis-
tinct effect on the generation process. Adjusting λscale and
λmid (top three rows) results in an uneven interpolation be-
tween full conditioning and no conditioning. In these cases,
the generated images exhibit minimal changes across most
λ values (1.0 to approximately 0.3) before transitioning
sharply (from 0.3 to 0.1) to images without any conditioning
constraints. In contrast, interpolating over λdown (bottom
two rows) reveals that the generated images progressively
relax their adherence to the fine details of the conditioning
structure image. This allows geometric style elements to
emerge without compromising the broader structure of the
image. Moreover, our experiments demonstrate that λconvs

plays a significant role in incorporating geometric informa-
tion in a visually pleasing manner.



Figure 15. SD3.5-Large Results. Results for text-only stylization, full layer stylization and balanced conditioning with SD3.5-Large.
Prompts: “A black bear riding a bicycle in bustling market. The market is full of stands selling fruits and vegetables,” “a Siamese cat
wearing scuba diving gear, horizontally scuba diving in a deep blue sea, watching a school of colorful jellyfish,” “A woman wearing a dark
orange trench coat and large sunglasses walking in the cold streets of London,” “A penguin riding a motorcycle,” “A pirate ship sailing
in the ocean and being attacked by the Kraken,” “A light-blue haired woman wearing a black attire and black steampunk goggles, leaning
on a futuristic yellow motorcycle,” “An elephant painting the Savannah. He is sitting in front of a canvas holding a paint brush with his
trunk,” and “A sculptor working in his studio. He is in the middle of sculpting a marble statue which starts to resemble a female figure.”

These findings are consistent with our analysis in Sec. 5,
which highlight the high sensitivity of the Up layers in the
denoising UNet to geometric style. From this, we con-
clude that λT , which controls the conditioning injections
in the Up layers over the timesteps of the generation pro-
cess, enables interpolation over the amount of geometric
style present in the output image.

10. Appendix C. — Stable Diffusion 3
10.1. Style Conditioning
Recently, the Stable Diffusion 3 (SD3) model family [11]
was released, offering new image generation diffusion mod-
els. Unlike SDXL [26] which uses a UNet based on Self-
Attention and Cross-Attention layers, the SD3 models are
based on a Joint-Attention layers which processes both im-
age information and text information. For this reason to ap-
ply balanced conditioning on these models we adapted the
stylization ideas suggested by Hertz et al. [17], which are
Self-Attention based, to the Join-Attention architecture.

Like Hertz et al. [17], we apply stylization by applying
AdaIN [19] between the attention features of a generated
style image and the target image, and sharing the features

Figure 16. Collection Examples. Representatives from the style
clusters generated during the SD3.5-Large analysis. Each sample
represents a different style.

of the Keys and Values on their projections. Since the Joint-
Attention layer concatenates the Query, Key, and Value pro-
jections to the text encodings, we apply these operations
before the concatenation to prevent changes in the text fea-



Easy Complex Easy + Complex
Text Depth Canny Text Depth Canny Averaged

Methods Content Style Content Style Content Style Content Style Content Style Content Style Content Style
Jeong et al. 0.277 0.625 0.278 0.563 0.293 0.485 0.292 0.630 0.289 0.579 0.316 0.487 0.289 0.578
InstantStyle 0.299 0.431 0.303 0.365 0.308 0.311 0.340 0.439 0.345 0.411 0.352 0.346 0.323 0.396
B-LoRA 0.296 0.493 0.304 0.376 0.308 0.327 0.352 0.443 0.363 0.361 0.364 0.302 0.329 0.404
StyleAligned 0.273 0.592 0.295 0.459 0.300 0.408 0.319 0.537 0.348 0.429 0.355 0.383 0.310 0.492
B-LoRA (Balanced - 10 Layers) 0.291 0.548 0.291 0.533 0.293 0.528 0.346 0.495 0.349 0.479 0.352 0.499 0.319 0.515
B-LoRA (Balanced - 20 Layers) 0.286 0.575 0.288 0.547 0.292 0.540 0.339 0.522 0.344 0.509 0.350 0.511 0.315 0.537
StyleAligned (Balanced) 0.297 0.504 0.296 0.501 0.297 0.497 0.351 0.482 0.349 0.480 0.353 0.468 0.323 0.489

Table 2. Comparison of methods across Easy and Complex prompts conditioned with and without Depth and Canny Conditioning.

Figure 17. Gram Based Evaluation. Style and content evaluation
using Gram-Matrix representation and Clip embeddings.

tures. During our experiments we noticed that unlike Hertz
et al. which applies AdaIN only on the Key and Query
projections of the attention layers, applying AdaIN on the
Value projections significantly contributes to the stylization
of the target image and is key for achieving a satisfying re-
sult. For this reason we incorporate this change to our style
conditioning algorithm for SD3.5-Large.

10.2. Analysis
We use our method presented in Sec. 4 to find SD3.5-Large
style sensitivities as presented in Sec. 5.1. Fig. 16 shows
examples from the collections generated during the analysis
process where each example is taken from a different style
cluster.

As shown in and Fig. 15, SD3.5-Large, like SDXL,
struggles with complex conditioning combinations. This is
particularly evident in the ”Text-Only Stylization” columns,
where including only the artist’s name in the prompt of-
ten results in style mismatches and, in extreme cases, the
complete omission of the target style. Conditioning on all
layers for style leads to significant content drift, whereas

Figure 18. Photographic-Editing Styles. ”A tabby cat”. Style
sensitive layers analyzed by our method are not limited to paint-
ing styles, but show sensitivities to other styles like photographic
editing styles. Notice that using full conditioning may result with
content drift and artifacts.

our balancing method effectively aligns the generated re-
sults with both the content and style of the reference image.
The balanced results we present were achieved by apply-
ing style conditioning to 28 out of 38 joint-attention layers
(λS = 0.73), which we identified as the optimal setting.

11. Appendix D. — Results

11.1. Qualitative Results
To demonstrate the ability of our conditioning strategy we
show additional results produced by the Balanced versions
of StyleAligned and B-LoRA for “Text Only” (Fig. 21),
“Text + Canny” (Fig. 22), and “Text + Depth”’ (Fig. 23).
We share additional qualitative comparisons between the
balanced versions of StyleAligned and B-LoRA with the
benchmark methods from Sec. 6 in Figs. 24 to 27. In addi-
tion, we compare ourself to two additional recent methods:
RB-Modulation [31] and InstaStyle [8]. Since both meth-
ods provide access to their model only through an interac-
tive web interface we could not evaluate their results using
Canny or Depth conditioning. For this reason we refrained



Figure 19. Unfamiliar Styles. A limitation example, where the
style of an artist (A) is unknown to the base model, causing a mis-
match in the reference image (B) which then results with a style
mismatch in the target image (C), even when the content matches
the artist.

from using their methods in our main comparison in Sec. 6.
For fairness, we present a qualitative comparison in Fig. 28
using a style reference and a text prompt without any struc-
ture conditioning.

11.2. Style Variation
To assess the generality of our method in identifying style-
sensitive layers, we extend our experiments to styles beyond
artistic paintings. Fig. 18 illustrates the applicability of our
style layers to photographic-editing styles. Notably, the
same style layers identified for artistic paintings enable our
method to generate photographs that adopt a reference style
while preserving content integrity and avoiding unwanted
artifacts and content drift from the style image.

11.3. Quantitative Results
We present a breakdown of our quantitative results in Tab. 2.
We show the results over Easy and Complex prompts, for all
conditioning types: “Text Only,” “Text + Depth,” and “Text
+ Canny.” We add an evaluation result for balancing B-
LoRA based on 20 layers, which we found optimal for text
conditioned generation. In addition we show the balanced
version used in Sec. 6 which is based on 10 layers.

Since style representation is still an active area of re-
search, we provide an additional evaluation of our results
using Gram matrices [15] as style descriptors instead of
Dino [5] features. As shown in Fig. 17, the Gram ma-
trix based results are consistent with those presented in
Sec. 6, further highlighting the effectiveness of our method
in achieving a balanced representation of both content and
style.

11.4. User Study Details
Study Design and Participant Demographics The user
study aimed to quantitatively evaluate the impact of balanc-
ing methods on the perceived quality of images conditioned
on content and style prompts. A total of 42 anonymous par-
ticipants took part, representing diverse backgrounds. The
cohort included 62% male participants, distributed across

the following age groups: 16 participants aged 25–32, 10
aged 33–38, 10 aged 39–45, and 6 participants aged over
45. Professional affiliations spanned research and develop-
ment (31%), computer science graduate studies (24%), pro-
fessional artistry (19%), and UX design (9%), ensuring a
broad spectrum of expertise relevant to the evaluation task.

Experimental Setup The study consisted of three tasks:
a multi-choice comparison and two A/B tests, detailed in
the main manuscript. Each task was designed to assess how
well balanced and imbalanced methods align with both con-
tent and style, as perceived by users. The stimuli were
generated by sampling from our dataset of text prompts
and style reference images. Stratified sampling ensured
a balanced representation of prompt complexity (“easy”
vs. “complex”) and conditioning techniques (e.g., Canny,
Depth, and Text-only).

To eliminate biases, no style image was repeated across
tasks, and the presentation order of images was randomized.
Importantly, participants were not informed of the underly-
ing generation method. The study was conducted online,
with participants completing the evaluation independently,
ensuring no researcher supervision or bias influenced the
results.

Tasks and Protocols
1. Multi-Choice Test: Participants selected the best image

from six options based on alignment with both the text
prompt and style reference. Two of the six options in
each instance were generated using balanced methods.
The test encompassed 15 unique content-style pairings
to ensure variety and robust statistical analysis.

2. A/B Tests: Each test involved binary comparisons be-
tween a method and its balanced counterpart. One
test focused on B-LoRA, while the other evaluated
StyleAligned. Both tests followed the same content-
style alignment criterion and included six unique pair-
ings for each method.

Figures illustrating the test interfaces and sample questions
can be found in Fig. 36 and Fig. 37.

Statistical Analysis. Results were analyzed using a Chi-
Squared Test for Independence to assess the preference for
balanced versus imbalanced methods. The null hypothesis
assumed no difference in user preference. For the multi-
choice test, the expected probability of selecting balanced
methods was set at 1

3 , based on their representation among
the six options. The observed preferences significantly di-
verged from the null hypothesis, as shown in Tab. 1 of the
main manuscript.

The study design and statistical robustness demonstrate a
clear and significant preference for balanced methods, val-



Figure 20. Style Transfer. Results generated using our balanced version of B-LoRA. Please zoom in for a better view.

idating their efficacy in improving the visual alignment of
content and style.

11.5. Method Limitations
As described in the main manuscript, the main limitations
of our method arise from its dependence on the capabilities
of the base model. For instance, when generating images
with a style unfamiliar to the base model, the result may
exhibit an unintended style, as the model lacks sufficient
knowledge to properly generate the style reference, leading
to a style mismatch. We demonstrate these limitations in
Fig. 19. As can be seen, the unique style of Enfant Précoce
(A) is unknown to SDXL, thus the reference image (B) and
output image (C) fail to match his unique style. This issue
is not caused by a content misalignment issue, as the style
fails to match the artist even when using a prompt that de-
scribes the content of an existing painting by the artist. In
our demonstration, we use the prompt: “A man leaning on
a red car surrounded by trees.”

12. Appendix E. — Additional Applications

12.1. Style Transfer
To perform style transfer given two content and style images
we use our balanced version of B-LoRA. For content align-
ment we use a Canny edge map as we find it the best option
for preserving the structure and alignment of the given con-
tent image. For stylization we employ B-LoRA’s approach
and fine-tune residual LoRA weights on the given style im-
age. Since B-LoRA does not change its stylization layer de-
cision for each timestep, we rank the layers based on their
average rank over all timesteps (see Fig. 11). In Sec. 6 we
base our balanced version on 10 self-attention layers (20
including cross-attention layers) for fairness reasons, as it
closely approximates the number of stylization layers used
by B-LoRA. In practice we find that using a larger number
of layers improves style fidelity. We experiment by using B-
LoRA with various layer decisions (Fig. 10), guided by our
layer ranking and we find that basing our choice on the 20



best self-attention layers (40 with cross-attentions) strikes a
fine balance between content and style. We show a quanti-
tative ablation between B-LoRA and the two balanced vari-
ants in Tab. 2. In addition, we show qualitative examples
produced the balanced version of B-LoRA in Fig. 20.

12.2. Material Generation
As shown in Sec. 6, using our balancing strategy yields ge-
ometric style freedom when generating artistic images. An-
other result of this is better generation of material style. We
show results in Fig. 29 and Fig. 30. As can be seen, by ap-
plying our balancing strategy StyleAligned gains the abil-
ity to generate physical aspects of different materials even
when conditioned on a content image. The regular version
of StyleAligned forces unnecessary conditional information
on the output on the content image, which results in patterns
that do not match the material.

12.3. ReStyle/ReContent
Copying the works of old masters is a time-honored tradi-
tion in the art world, dating back to the origins of paint-
ing itself. This practice serves as a tool for artists to refine
their techniques and develop their unique personal styles.
Throughout history, many renowned painters have engaged
in this approach - examples include Vincent van Gogh, who
copied works by Jean-François Millet, and Pablo Picasso,
who reinterpreted works by Diego Velázquez such as Las
Meninas. This tradition has even given rise to several iconic
artworks, such as Edgar Degas’ studies of Old Masters like
Nicolas Poussin and Rembrandt, or Francis Bacon’s re-
imaginings of Diego Velázquez’s Portrait of Pope Innocent
X. Inspired by this classical method of artistic learning, we
utilize our stylization approach, which enables the applica-
tion of distinctive styles to the works of old masters - a pro-
cess we call ReStyle. Additionally, our method extends the
model’s geometric flexibility, allowing for the re-imagining
of an artwork’s content in innovative ways - a feature we
refer to as ReContent.

To achieve this flexibly-conditioned image editing capa-
bility, we first use the original artwork as a structural condi-
tion, employing either a Canny or Depth map. We then gen-
erate the edited image using a relatively high style weight,
λS ≈ 0.55, a low content weight, λT < 0.2, and a de-
scriptive text prompt. Setting these values for λS and λT

allows for a strong resemblance to the artistic style of the
style condition while providing geometric flexibility. This
not only ensures a fine resemblance to the style condition
but also enables content modifications to the original im-
age through the text prompt. Examples are shown in Figs.
31 and 32. As demonstrated, our approach effectively edits
both the style and content of the original image while pre-
serving its underlying structure and general characteristics,
even when the generated content shift is significant.



Figure 21. Text Conditioned Results. Zoom in for a better view.



Figure 22. Canny Conditioned Results. Zoom in for a better view.



Figure 23. Depth Conditioned Results. Zoom in for a better view.



Figure 24. Qualitative Comparison. A comparison of different conditional combinations: Easy vs Complex prompt (two first rows vs. two
last rows), Text only vs. Text and content image conditioning (1,3 vs 2,4 rows). As can be seen, both balanced methods achieves consistency
over all conditioning combinations while the imbalanced methods show an inconsistent generation quality and in some examples content
and style issues.

Figure 25. Qualitative Comparison. A comparison of different conditional combinations: Easy vs Complex prompt (two first rows vs. two
last rows), Text only vs. Text and content image conditioning (1,3 vs 2,4 rows). As can be seen, both balanced methods achieves consistency
over all conditioning combinations while the imbalanced methods show an inconsistent generation quality and in some examples content
and style issues.



Figure 26. Qualitative Comparison. A comparison of different conditional combinations: Easy vs Complex prompt (two first rows vs. two
last rows), Text only vs. Text and content image conditioning (1,3 vs 2,4 rows). As can be seen, both balanced methods achieves consistency
over all conditioning combinations while the imbalanced methods show an inconsistent generation quality and in some examples content
and style issues.

Figure 27. Qualitative Comparison. A comparison of different conditional combinations: Easy vs Complex prompt (two first rows vs. two
last rows), Text only vs. Text and content image conditioning (1,3 vs 2,4 rows). As can be seen, both balanced methods achieves consistency
over all conditioning combinations while the imbalanced methods show an inconsistent generation quality and in some examples content
and style issues.



Figure 28. Additional Comparisons. Prompt + style image conditioned outputs for RB-Modulation (top left), InstaStyle (top right),
Balanced B-LoRA (bottom left), and Balanced StyleAligned (bottom right.) Please zoom in for a better view.



Figure 29. Material Style Generation. A sample of generated images with materialistic style, aligned to content images. Please zoom in
for a better view.



Figure 30. Material Style Generation. A sample of generated images with materialistic style, aligned to content images. Please zoom in
for a better view.



Figure 31. Restyle/Recontent Example 1. An example of restyling a painting inspired by van-Gogh’s recreation of ”Noonday Rest” by
Jean-Francois Millet. The first column shows an example of restyling the content input without changing the original content while the rest
of the columns shows an example of ReStyle and ReContent by editing both the image style and content of the output. (Please zoom in for
a better view.)



Figure 32. Restyle/Recontent Example 2. An example of restyling a painting of Rosa Bonheur: ”The Lion at Home”. The first column
shows an example of restyling the content input without changing the original content while the rest of the columns shows an example of
ReStyle and ReContent by editing both the image style and content of the output. (Please zoom in for a better view.)



Figure 33. Style Collections Example. An example of a paintings collection used for our style sensitivity analysis.



Figure 34. Geometric Collection Example. An example of a paintings collection used for our geometric style sensitivity analysis. Please
zoom in for a better view.



Figure 35. Geometric Collection Example. An example of a paintings collection used for our geometric style sensitivity analysis. Please
zoom in for a better view.



Figure 36. User Study - Multiple Choice Questions. A sample of a multiple choice question from the user study.



Figure 37. User Study - A/B choice Questions.. A sample of an A/B choice question from the user study.
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