Supplementary Material
Functionality understanding and segmentation in 3D scenes

Jaime Corsetti? Francesco Giuliari!

'Fondazione Bruno Kessler

Alice Fasoli!

Davide Boscaini! Fabio Poiesi’

*University of Trento

{jcorsetti, fgiuliari,alfasoli,dboscaini, poiesi}@fbk .eu

In this supplementary material, we provide an analysis of the
methods used for functionality segmentation (Sec. 1), delve
deeper into the ablation studies highlighting the capabilities
of our proposed approach (Sec. 2), and present additional
qualitative results (Sec. 3). We finally report the hardware
setup and the implementation details in Sec. 4.

1. Baselines

In the following section, we report the architecture of the
baseline methods, as well as their implementation details
(Sec. 1.1). We then show the results obtained with variations
in the prompt and architecture of the baselines (Sec. 1.2).

1.1. Methods details

As SceneFun3D did not release the code used for Open-
Mask3D and LERF, we use their original code and follow
SceneFun3D’s instructions to reproduce the results.
OpenMask3D [11] is an open-vocabulary 3D instance seg-
mentation method that operates jointly on 3D and 2D data.
As first step, Mask3D [10] is used on the scene to obtain a set
of 3D class-agnostic masks. The 3D masks are projected on
the scene views, and the top K views are selected according
to the visibility of the projected mask on the frames. The
selected views are segmented via SAM [7] and CLIP [9] is
used to extract multi-scale embedding from each SAM mask.
By leveraging 2D-3D correspondences, the features for each
mask are aggregated in 3D, so that a CLIP feature vector
characterizes each original 3D mask. Open-vocabulary seg-
mentation is obtained by embedding the description D with
CLIP and retrieving the most similar masks, selecting the
ones with a similarity higher than a threshold 7.

Following SceneFun3D [4], we test OpenMask3D with-
out retraining, with the original implementation' and check-
point trained on ScanNet200 [2]. To account for the high
dimension of SceneFun3D point clouds with respect to the
ones used for training, we subsample each point cloud to a
maximum of 2 million points and retain the top 200 masks

https://github.com/OpenMask3D/openmask3d

Table 1. Results obtained by OpenMask3D, LERF, and Openlns3D
with different types of prompts, on splitO of SceneFun3D.

Method Prompt ‘ mAP AP5q APo5 ‘ mAR ARj5p ARss ‘ mloU
| 3D W\ original| 02 02 04 |203 245 270/ 02
2 OQB“MA parsed | 0.2 02 02 | 139 17.1 19.8| 0.2
{ns3D {5\ original| 0.0 0.0 0.0 |405 46.7 51.5| 0.1
Ope™ parsed | 0.0 0.0 0.0 | 309 355 387 0.1
LERF 16 original| 0.0 0.0 0.0 |342 351 36.0]| 0.0
parsed | 0.0 0.0 0.0 |342 351 359]| 0.0

7 Fun3DU (ours) ~original| 7.6 169 333|274 382 467|152

Table 2. Results obtained by Openlns3D [5], with and without the
original ‘Snap’ rendering module used for 2D segmentation, and
with different segmentors, on splitO of the SceneFun3D dataset.

Snap Segmentor ‘mAP APs5p AP35 |mAR AR5y ARs; |mloU

Yolo-world [1]| 0.0 0.0 0.0 | 405 46.7 515 | 0.1
v Yolo-world [I]| 0.0 0.0 00 | 41 43 49 | 00
ODISE [12] 00 00 0.0 |248 298 319 00
v ODISE [12] 00 00 00| 41 56 67| 00

N S

for the 2D segmentation procedure.

OpenlIns3D [5] is a 3D-only framework for 3D open-
vocabulary instance segmentation. It features three modules,
named ‘Mask’, ‘Snap’, and ‘Lookup’. The ‘Mask’ module
generates class-agnostic mask proposals in 3D point clouds,
while the ‘Snap’ module generates synthetic images of the
scene at multiple scales, in order to cover the locations of
the previously extracted 3D masks. The generated views
are processed by an open-vocabulary 2D localization mod-
ule [12] to extract the objects from the textual description D.
Finally, the ‘Lookup’ module searches through the outcomes
of each extracted 2D mask, and by using Mask2Pixels corre-
spondences transfers the semantic labels from 2D to 3D. We
test Openlns3D on SceneFun3D without retraining, using
the official implementation” and the checkpoint trained on
ScanNet200 [2]. However, we found that using the ‘Snap’
module is not beneficial in our case (see Tab. 2), and instead
we use the 2D images provided by SceneFun3D. Specifically,

Zhttps://github.com/Pointcept/OpenIns3D

https://github.com/OpenMask3D/openmask3d
https://github.com/Pointcept/OpenIns3D

we sample 120 views per scene at uniform time intervals, and
render 24 views when using the ‘Snap’ module, following
the Openlns3D’s standard setting. We found that rendering
more than 24 views did not lead to better performance.
Openlns3D reported results with both Yolo-world [1] and
ODISE [12] as 2D detector. We use Yolo-world in our stan-
dard setting for better performance. The open-vocabulary 2D
detector is used together with CLIP for ranking and filtering
the masks, in order to reduce the false positives.
LERF [6] is a method based on neural radiance fields [8]
that produces pixel-level feature maps from arbitrary view-
points within a scene. The features are trained to align with
CLIP [9], so that a textual description can be used to ob-
tain the most relevant pixels. By lifting and aggregating the
pixels on the 3D point cloud, open-vocabulary 3D semantic
segmentation can be performed. For each high-resolution
image sequence in SceneFun3D, we train a LERF model
using the official implementation® integrated with Nerfstu-
dio*. We first sample each high-resolution video sequence
at 2Hz, and run Colmap to estimate and refine the camera
poses. Next, we train LERF models on sequences in which
Colmap matches at least 10% of the views and identifies at
least 10 valid views. Finally, we use the task description as
the prompt to extract relevancy maps for each view. The final
3D mask is obtained by lifting and accumulating the score
of each pixel on each point, and finally applying a threshold
on points with a positive score.

1.2. Additional results

In Tab. 1 we report the extended results on the baselines,
obtained with the prompt composed by concatenating the
contextual and functional object names (e.g., ‘cabinet
handle’). In principle, using a shorter description is benefi-
cial as all the baselines have been tested with relatively short
prompts, i.e., describing single objects. Instead, compared
to using the standard prompt provided by SceneFun3D, this
leads to a worse performance in all cases, with the exception
of LERF which remains on par (rows 5 vs 6). In particu-
lar, OpenMask3D loses 0.2 APs5 and 7.2 ARg5 (rows 1 vs
2), while OpenlIns3D loses 12.8 AR5 (rows 3 vs 4). This
suggests that the text encoder used by the baselines [9] is to
some extent capable of processing more advanced prompts,
and therefore removing the context given from the original
prompt hinders the performance.

In Tab. 2 we report additional results on Openlns3D [5],
showing how our modifications influenced its performance
on SceneFun3D. Row 1 is the version we use as baseline,
in which the RGB frames are used in place of the ‘Snap’
module and Yolo-world [1] replaces ODISE [12] to perform
2D localization. In row 2, we use the original ‘Snap’ module,
which renders a set of views of the scene according to the 3D

3https://github.com/kerrj/lerf
4https://docs.nerf.studio/

mask proposals. Using this module results in a large drop in
performance, as the ARo5 loses 46.6 points. We observe that
scene renders are designed to focus on the common furniture
objects retrieved from the mask proposal module, often from
a top-down perspective. This is suboptimal for finding the
small functional objects, and therefore Openlns3D benefits
from using the original frames of SceneFun3D, which often
show close-up views of the objects. In rows 3 and 4 we
replace Yolo-world with ODISE [12], respectively without
and with the ‘Snap’ module. Both configurations fall short of
the baseline at row 1. As the authors of Openlns3D observed,
Yolo-world performs better on real images (i.e., without the
‘Snap’ module), while ODISE performs better on rendered
images (i.e., with the ‘Snap’ module).

2. Extended ablation studies

In Sec. 2.1 we extend the ablation study on the number of
views V/, by showing additional results and reporting how
this hyperparameter influences the processing time.

2.1. Hyperparameter sensitivity analysis

We report in Tab. 3 the mIoU values obtained by varying the
threshold 7 and the number of sampled views V. Addition-
ally to the values reported in the main paper, we show the
change in performance with V =100 and V = 200. We ob-
serve that, compared to our standard setting (row 4, V= 50),
sampling V = 100 views causes a small increment of 0.6
points of mloU, but almost doubles the processing time per
task description (118.4 vs 204.6 seconds). Instead, setting
V = 200 is not beneficial, as it lowers the mloU of 1.3
points with respect to our baseline with the default 7 = 0.7.
When so many views are sampled, spurious masks are more
easily retrieved, thereby lowering the final performance. As
a trade-off between performance and execution time, we set
V = 50 in our standard setting.

Table 3. Results in mIoU on split0 of SceneFun3D, obtained by
sampling different numbers of views V and using different thresh-
olds 7. The last row reports the average time per task description D
for retrieving the top views, performing functional object segmenta-
tion, and multi-view agreement to obtain the final point clouds. The
timings for task description understanding and contextual object
segmentation are excluded, as they are constant.

Number of views V used for View Selection

T 2 4 10 20 30 50 100 200
101 |71 67 64 62 58 55 48 34
03 |71 76 87 98 98 101 10.1 7.6

(USI \S)

0.5 81 93 10.8 12.1 12.6 13.1 140 114
0.7 81 94 10.7 129 139 153 159 14.0
0.9 81 9.6 10.0 109 12.6 132 133 11.1

Time (s)‘28.4 34.7 42.3 60.7 81.9 118.4 204.6 237.6

(S

https://github.com/kerrj/lerf
https://docs.nerf.studio/

3. Additional qualitative results

In Sec. 3.1 we report examples of outputs of the task descrip-
tion understanding module, showing how the contextual and
functional object names are retrieved. Sec. 3.2 reports exam-
ples of view selection, by showing the retrieved contextual
masks along with their scores. In Sec. 3.3, we show ex-
amples of points extracted with Molmo [3], along with the
final segmentation mask provided by SAM [7]. Finally, in
Sec. 3.4 we extend the qualitative results on functionality
segmentation provided in the main paper.

3.1. Task description understanding

We report in Fig. 1, some examples of task description un-
derstanding, where we use the LLM to extract the functional
object F and contextual object O from a given text descrip-
tion D. The description is shown in the blue box, and the
LLM response is shown in the red box. For the sake of
brevity, in the figure we omit the system message “You are
an Al System that has to provide JSON files to a robotic
system so that it can interact with our physical world, based
on a natural language prompt. In particular, you have to
help the robot in identify which object parts it has to interact
with to solve particular tasks. Its set of possible actions are
[rotate, key_press, tip_push, hook_pull, pinch_pull, hook_turn,
foot_push, plug_in, unplug]”, as it is the same for all con-
versations. For the same reason, we omit also the part of
the user message where we ask the LLM to respond with a
structured json: “How do I {Task description D}?
Respond directly with only the json with the following format.
{ "task_solving_sequence”: a list of strings with the descrip-
tion of what I have to do to accomplish the task described
by the prompt, subdivided in subtasks., ”acted_on_object”:
a string with the name of the object part on which I have to
act on., "acted_on_object_hierarchy”: a list of object parts
from the top level object to the object part. }”.

We observe that in most cases, the LLM successfully pro-
vides an object hierarchy that is useful for the view selection
process. Typically, the first object in the hierarchy, which
we use as “contextual object” (0), serves this purpose effec-
tively. However, there are some failure cases, specifically
(c) and (d). In case (c), the object hierarchy is reversed; an
uncommon but occasionally observed behavior. Despite this
reversal, the ‘telephone’ is still correctly identified as the
contextual object. In case (d), however, the contextual object
is identified as ‘ceiling light’, which is unsuitable for view
selection. This happens because the functional object ‘light
switch’ would more likely be mounted on the wall.

An interesting observation arises in cases (e) and (f),
where a small change in the description, from “left” to
“right”, leads to significantly different responses. These ex-
amples highlight how the LLM reasons at different levels of
abstraction. In case (e), it assumes that the “left tap” can be
acted upon, identifying it as the functional object. Instead,

in case (f), it interprets the tap as part of the object hierarchy,
identifying the functional object as the “switch” on the tap.

These examples underline the LLM’s overall effective-
ness in interpreting task descriptions and generating useful
object hierarchies, while also highlighting certain limitations
in handling ambiguous or nuanced descriptions. Understand-
ing these strengths and weaknesses is crucial for refining its
reasoning capabilities and ensuring more consistent perfor-
mance in diverse scenarios.

3.2. Score-based view selection

We report in Fig. 2 some examples of contextual object
masks retrieved by our view selection mechanism, from the
highest score (leftmost) to the lowest score (rightmost). For
each mask, we report the total score used for ranking S,
the detection confidence score S,,, the distance distribution
score .S, and the angle distribution score .S,. In the first row,
we can observe an ideal case, in which the first three views
show the contextual object (the kitchen range hood) well
visible in the images, while the fourth and fifth images only
show a portion of the object. Similarly, in the second row
the first two images show a close-up view of the nightstand,
while the remaining images show a progressively far and
occluded mask. Note that the last two images are the ones
with the highest detection confidence S, among the five
samples. This shows that only considering the detection
confidence could lead to selecting views that are not optimal
for functionality segmentation.

In the third row, the TV stand is well-visible and centered
in the first three views. In the last two views instead, partial
occlusions lead to a lower score, mostly due to the low angle
scores S,,. Finally, the last row shows a more complex case,
in which multiple instances of the contextual object (win-
dow) are present. In this case, the correct masks (the third
and fourth) have high Sy and S,, scores, but due to a lower
Sm score, they are not ranked in the first positions. This
shows that weighting all the scores can provide the correct
masks that would be discarded when only the confidence
score S, is considered.

3.3. Functional object segmentation

Fig. 3 shows some examples of functional object segmenta-
tion on the scene views. For each column, we report on the
left the point(s) provided by Molmo [3], and on the right the
mask(s) obtained by SAM [7], using the point(s) as input.

In the first row, the VLM can correctly point to the func-
tional objects (the bottom drawer handles), but due to the
limited image resolution, the whole drawer is segmented in
the first case. Due to our view selection strategy, in most
cases, the contextual object (the nightstand) is clearly visible
in the view, as in the second column, and therefore the final
3D mask accurately segments the functional object.

The second row shows a very ambiguous case, in which

Open the bottom drawer of the
nightstand with the red table lamp
on top

Turn on the TV using one of the
remotes on the headboard

Dial a number on the telephone on
the nightstand

task_solving_sequence:

[“Locate the nightstand with the
red table lamp on top”, “Identify
the bottom drawer of the night-
stand”, “Approach the bottom
drawer and position yourself to
interact with it”]

acted_on_object: “drawer handle”,
acted_on_object_hierarchy:

[“nightstand”, “drawer”]

task_solving_sequence:

[“Locate the remote control on the
headboard”, “Identify the power
button on the remote control”,
“Press the power button with your
finger”]

acted_on_object: “power button”,
acted_on_object_hierarchy:

[“headboard”, “remote control”,
“power button”]

task_solving_sequence:

[“Locate the telephone on the
nightstand”, “Identify the dial pad
on the telephone”, “Place your fin-
ger on the correct digit to press” |
acted_on_object: “dial pad”,
acted_on_object_hierarchy:

[“telephone”, “nightstand”]

(a)

(b)

()

Turn on the ceiling light

Turn on the left tap so that hot
water flows into the sink

Turn on the right tap so that cold
water flows into the sink

task_solving_sequence:

[“Locate the light switch”]
acted_on_object: “light switch”,
acted_on_object_hierarchy:

[“ceiling light”, “light fixture”,
“electrical panel”]

task_solving_sequence:

[“Locate the sink”, “Identify the
left tap”, “Move towards the left
tap”]

acted_on_object: “left tap”,
acted_on_object_hierarchy:

[“sink”, “tap”]

task _solving_sequence:

[“Locate the sink”, “Identify the
right tap”, “Find the switch or han-
dle for the right tap”]
acted_on_object: “switch”,
acted_on_object_hierarchy:

[“sink”, “tap”, “switch”]

(d)

(e

®

Figure 1. Examples of LLM conversations. The blue box shows the task description D, and the red box is the LLM response. We omit the
system message and the JSON structure in the user prompt, which can be observed in Fig. 3 of the main paper.

three radiator parts look similar to the functional object (the
dial). In the first case, all objects are pointed and segmented,
while in the second case, only the correct one is segmented.
These spurious errors are effectively removed by our multi-
view agreement strategy, by accumulating the 2D masks and
applying a threshold.

In the third row, we can observe a particularly difficult
case, in which the functional object (the remote) is very
occluded in the first view. Nonetheless, the VLM is capable
of pointing to it, resulting in a correct 2D mask. This shows
that the VLM is effective not only in finding small objects
such as knobs and buttons, but also in recognizing heavily
occluded objects, such as the remote in the second case.

In the final row, we observe how the VLM is capable of
recognizing the humidifier, which is an unusual object that
can have very different appearances based on its design. In
both views, the VLM can point to the central button of the
humidifier and SAM provides an accurate mask.

3.4. Point cloud segmentation

We report additional qualitative results on splitO of Scene-
Fun3D in Fig. 4. In the first column, Fun3DU is the only
method to obtain an accurate segmentation mask of the light
switch. Note that the precision in this case is relatively low,
as the ground-truth mask only considers the light switch
itself, while our method also segments the panel around it.
In all the other cases, Fun3DU obtains precision higher than
70 and recall higher than 65, while the baselines either seg-
ment the whole contextual object (e.g., Openlns3D in all
cases), or fail in finding relevant points (e.g., OpenMask3D
in the third and fourth column, and LERF in the second
and fifth column). These examples show particularly small
functional objects, which are extremely difficult to handle
without ad-hoc techniques as in Fun3DU.

We report qualitative results on splitl of SceneFun3D in
Fig. 5. This partition is more difficult than splitO, as it fea-

tures more complex scenes with more points, on average. In
the first column, Fun3DU can accurately segment the handle
on the oven, while other methods fail at finding a relevant
mask (OpenMask3D, LERF) or segment a large portion of
the kitchen (OpenIns3D). Similarly, in the second column,
our method is the only one to locate the small valve at the
bottom of the radiator, while Openlns3D is only capable
of segmenting the whole object. The third column shows a
case in which Fun3DU fails: instead of segmenting the lock
used to open the blue case, it segments the handle just under-
neath it. This could be due to an error in the task description
understanding, in which ‘handle’ has been provided by
the LLM instead of ‘1lock’. Instead, the other methods ei-
ther segment only the audio system (Openlns3D) or cannot
find any relevant mask. In the fourth column our method
correctly identifies the telephone on the TV, but segments
the whole phone instead of the dial pad, resulting in high
recall and relatively low precision. Finally, the fifth column
is a particularly difficult case, in which the task description
requires adjusting the seat height of the exercise bike, on
which two knobs are located. Fun3DU segments both knobs,
still resulting in a high mIoU of 44.12, while the other meth-
ods fail at providing accurate masks. In Fig. 6, we report
two examples of segmentation masks of Fun3DU on the
complete point cloud of the scene, to show the complexity
of the context surrounding the functional objects.

4. Implementation details

We implement Fun3DU in Pytorch and carry out all
experiments on an NVIDIA A100 GPU. We use the
public HuggingFace models for Owlv2’, SAM® and
Molmo’.

References

[1] Tianheng Cheng, Lin Song, Yixiao Ge, Wenyu Liu, Xing-
gang Wang, and Ying Shan. Yolo-world: Real-time open-
vocabulary object detection. In CVPR, 2024. 1, 2

[2] Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber,
Thomas Funkhouser, and Matthias NieBner. Scannet: Richly-
annotated 3d reconstructions of indoor scenes. In CVPR,
2017. 1

[3] Matt Deitke, Christopher Clark, Sangho Lee, Rohun Tripathi,
Yue Yang, Jae Sung Park, Mohammadreza Salehi, Niklas
Muennighoft, Kyle Lo, Luca Soldaini, et al. Molmo and
pixmo: Open weights and open data for state-of-the-art mul-
timodal models. arXiv preprint arXiv:2409.17146, 2024. 3,
7

[4] Alexandros Delitzas, Ayca Takmaz, Federico Tombari, Robert
Sumner, Marc Pollefeys, and Francis Engelmann. Scene-

Shttps : / / huggingface .
patchlé-ensemble

co / google / owlv2 - base -

Shttps://huggingface.co/jadechoghari/robustsam-
vit-large
7https://huqqianace.co/allenai/Molmo—7B—D—O924

(5]

(6]

(7]

(8]

(9]

(10]

(1]

[12]

Fun3D: Fine-grained functionality and affordance understand-
ing in 3D scenes. In CVPR, 2024. 1, 8,9

Zhening Huang, Xiaoyang Wu, Xi Chen, Hengshuang Zhao,
Lei Zhu, and Joan Lasenby. Openins3d: Snap and lookup for
3d open-vocabulary instance segmentation. ECCV, 2024. 1,
2,9

Justin Kerr, Chung Min Kim, Ken Goldberg, Angjoo
Kanazawa, and Matthew Tancik. Lerf: Language embed-
ded radiance fields. In ICCV, 2023. 1, 2,9

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C Berg, Wan-Yen Lo, et al. Segment any-
thing. In ICCV, 2023. 1, 3,7

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view synthe-
sis. ACM, 2021. 2

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervision.
In ICML, 2021. 1,2

Jonas Schult, Francis Engelmann, Alexander Hermans, Or
Litany, Siyu Tang, and Bastian Leibe. Mask3d: Mask trans-
former for 3d semantic instance segmentation. In /CRA, 2023.
1

Ayca Takmaz, Elisabetta Fedele, Robert Sumner, Marc
Pollefeys, Federico Tombari, and Francis Engelmann.
Openmask3d: Open-vocabulary 3d instance segmentation.
NeurIPS, 2024. 1,9

Jiarui Xu, Sifei Liu, Arash Vahdat, Wonmin Byeon, Xiaolong
Wang, and Shalini De Mello. Open-vocabulary panoptic
segmentation with text-to-image diffusion models. In CVPR,
2023. 1,2

https://huggingface.co/google/owlv2-base-patch16-ensemble
https://huggingface.co/google/owlv2-base-patch16-ensemble
https://huggingface.co/jadechoghari/robustsam-vit-large
https://huggingface.co/jadechoghari/robustsam-vit-large
https://huggingface.co/allenai/Molmo-7B-D-0924

Kitchen range hood

r

?

S$:0.908 Sy, : 0.878 S :0.866 Sy, : 0.777 S5 :0.826 Sy, 1 0.748 510776 Sm 1 0.766 S :‘0‘74‘16' Sm £ 0.727
Sq:0.945 Sq :0.929 Sq:0.953 Sq :0.956 Sq:0.926 S, :0.879 Sq:0.842 S, : 0.730 Sq:0.848 Sq : 0.684

Nightstand

b A 5. 8) & s MECEAN I N
S:0.843 S : 0.715 5:0.789 Sy : 0.617 S:0.755 S :0.798 5:0.748 Sy, : 0.814 S:0.727 Sy : 0.843
S4:0.968 So:0.972 Sy:0.947 Sa:0.975 S;:0.887 So:0.540 Sg:0.877 Sa:0.486 Sy:0.795 Su : 0.429

TV stand

©5:0.779 Sm:0.611 S :0.776 S : 0.634 5:0.727 Sm :0.558 S :0.705 S : 0.621
Sy:0.942 So:0.950 Sy:0.923 So:0.942 Sy:0.953 Sa:0.839 Sg:0.918 Sa :0.660

Top right window
z

=
S:0.712 Sy :0.490 S:0.623 Sp : 0459 S:0.589 Spm:0.235 S:0.572 Sp:0.326 S :0.555 Sy :0.445
S4:0.953 Su:0.915 Sg:0.883 S :0.691 Sy:0.965 Su:0.919 Sy:0.919 Sa:0.719 Sg:0.715 So :0.616

’7I]

-

Figure 2. Examples of selected contextual object masks with their scores, from highest rank (left) to lowest rank (right). We highlighted
the segmented regions by alpha blending with a white background, to enhance the result visibility. On top of each view set we report the
contextual object.

Open the bottom drawer of the nightstand with the red table lamp on top

Adjust the room’s temperature using the radiator dial

A

blue couch

§ A

1

A“\ »u| }‘1

Figure 3. Examples points (in green) extracted with the VLM [3], along with the masks produced by SAM [7]. We highlighted the segmented
regions by alpha blending with a white background, to enhance the result visibility.

“Prc: 3.62 Prc: 0.00
Rec:100.00 Rec: 0.00 | Rec: 98.55
IoU: 0.00 IoU: 3.62 IoU: 0.00 IoU: 0.00 IoU: 0.73

Pro #8253 Prc: 0.19
Rec:100.00 Rec: 96.29
IoU: 2.53 IoU: 0.19

Prc: 0.04
Rec: 98.27
IoU: 0.04

bl il

Prc: 29.53 | : Prc: 99.63
Rec:100.00] 3 : . Rec: 65.84
IoU: 29.53 IoU: 61.22 IoU: 70.85 IoU: 65.68

Figure 4. Qualitative examples of Fun3DU and the baselines on splitO of SceneFun3D [4]. Point clouds are cropped around the functional
object for better visualization. We report mask-level Precision (Prc), Recall (Rec), and IoU.

Open the
bottom door of
the oven

OpenMask3D [11]

Openlns3D [5]

Fun3DU (ours)

Ground truth

Figure 5. Qualitative examples of Fun3DU and the baselines on splitl of SceneFun3D [4]. Point clouds are cropped around the functional

Adjust the
room’ s
temperature
using the
radiator dial
next to the
closet

Open the blue
case next to
the audio
system

Rec: 0.00

Dial a number Adjust the
on the height of the
telephone next seat on the
to the TV exercise bike

Rec: 69.97

object for better visualization. We report mask-level Precision (Prc), Recall (Rec), and IoU.

Dial a number on the telephone next to the TV

Figure 6. Qualitative results of Fun3DU on the whole point cloud (left), with detail on the portion within the red circle, that shows the
segmented object (right). For better visualization, we removed the room ceilings from the point clouds.

	Baselines
	Methods details
	Additional results

	Extended ablation studies
	Hyperparameter sensitivity analysis

	Additional qualitative results
	Task description understanding
	Score-based view selection
	Functional object segmentation
	Point cloud segmentation

	Implementation details

