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6. Detailed Preliminaries
Diffusion models. Diffusion models [11, 20, 26, 28, 51, 61,
64, 65, 71] are a class of generative models trained to reverse
a process that progressively inserts Gaussian noise across
T steps into the original data samples, transforming them
into standard Gaussian noise. Formally, the forward process
defined by:

xt = ωtx0 + εtϑ, ϑ → N (0, I) (9)
transforms the original samples x0 → p(x0) into noisy ver-
sions xt, following the noise schedule implied by the time-
dependent predefined functions (ωt)

T
t=1 and (εt)

T
t=1. The

model is trained to estimate the noise ϑ added in the for-
ward step defined in Eq. (9), by minimizing the following
objective:
Lsimple = Et→U(1,T ),ω→N (0,I),x0→p(x0)↑ϑt ↓ ϑε(xt, t)↑2 .

(10)
The generation process involves denoising, starting from
a sample of standard Gaussian noise, denoted as xT →
N (0, I). It then follows the transitions outlined in Eq. (11)
to produce novel samples:

pε(xt↑1|xt) = N
(
xt↑1;µε(xt, t),ε

2
t|t↑1

ε
2
t↑1

ε
2
t

)
, (11)

with µε(xt, t) =
1

ϑt|t→1

(
xt ↓

ωω(xt,t)ϖ
2
t|t→1

ϖt

)
, where

ε
2
t|t↑1 = ε

2
t ↓ ω

2
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2
t↑1 and ωt|t↑1 =

ϑt
ϑt→1

.
The forward process can also be defined in a continuous

time manner [65], as a stochastic differential equation (SDE):
dxt = f(t)xtdt+ g(t)dϖt, t ↔ [0, T ], (12)

where, given the notations from Eq. (9), we can write f(t) =
d logϑ(t)

dt and g
2
(t) =

dϖ2(t)
dt ↓ 2

d logϑ(t)
dt · ε2

(t), and ϖt is
the standard Brownian motion.

Furthermore, the diffusion process described by the SDE
from Eq. (12) can be reversed by another diffusion process
given by a reverse-time SDE [2, 65]. In addition to this, Song
et al. [65] showed that the reverse SDE has a corresponding
ordinary differential equation (ODE), called Probability flow-
ODE (PF-ODE), with the following form:

dxt = f(t)xtdt+
g
2
(t)

2ε(t)
ϑε(xt, t). (13)

Consistency models. Consistency models [36, 63, 66] are
a new class of generative models. These models operate on
the idea of training a model to associate each point along a
trajectory of the PF-ODE (Eq. (13)) to the trajectory’s initial
point, which corresponds to the denoised sample. Such mod-
els can either be trained from scratch or through distillation
from a pre-trained diffusion model. In our study, we employ
the distillation method, so we next detail this approach.

Given a solution trajectory {xt}t↓[ϱ,T ] of the PF-ODE
defined in Eq. (13), where ϱ ↗ 0, the training of a consis-
tency model fς(xt, t) involves enforcing the self-consistency
property across this trajectory, such that, ↘t, t↔ ↔ [ϱ, T ], the
condition fς(xt, t) = fς(xt↑ , t

↔
) holds. The loss function

designed to achieve this self-consistency is described as fol-
lows:

LCD(ς) = d(fς(xtn+1 , tn+1), fς→(x̂
ε
tn , tn)), (14)

where d is a distance metric, n → U(1, N), N is the dis-
cretization length of the interval [0, T ], ς are the trainable
parameters of the consistency model and ς

↑ is a running
average of ς. The term x̂

ε
tn represents a one-step denoised

version of xtn+1 , obtained by applying an ODE solver on the
PF-ODE. The solver operates using a pre-trained diffusion
model, ϑε(xtn , tn).
Direct Preference Optimization (DPO). Training pipelines
based on Reinforcement Learning with Human Feedback
(RLHF) [79] have been highly successful in aligning Large
Language Models to human preferences. These pipelines
feature an initial phase where a reward model is trained using
examples ranked by humans, followed by a reinforcement
learning phase where the policy model is fine-tuned to align
with the learned reward model. In this context, Rafailov
et al. [48] introduced DPO as an alternative to the previous
pipeline, which bypasses the training of the reward model
and directly optimizes the policy model using the ranked
examples.

The training dataset contains triplets of the form
(c, x

w
0 , x

l
0), where x

w
0 denotes the favored sample, xl

0 the
unfavored one and c is a condition used to generate both
samples. RLHF trains a reward model by maximizing the
likelihood p(x

w
0 ≃ x

l
0|c)1, which, under the Bradley-Terry

(BT) model, has the following form:
pBT(x

w
0 ≃ x

l
0|c) = ε(rφ(x

w
0 , c)↓ rφ(x

l
0, c)), (15)

where ε denotes the sigmoid function and rφ is the reward
model parameterized by the trainable parameters φ. The
training objective for the reward model is the negative log-
likelihood:
LBT = ↓Exw

0 ,xl
0,c

[
log ε(rφ(x

w
0 , c)↓ rφ(x

l
0, c))

]
. (16)

After training the reward model rφ(x0, c), RLHF optimizes
a conditional generative model pε(x0|c) to maximize the
reward rφ(x0, c) and, at the same time, controls the de-
viance from a reference model pref(x0, c) through a Kull-
back–Leibler (KL) divergence term:
max

ε
Ec,x0→pω(x0|c) [rφ(x0, c)↓↼KL(pε(x0|c), pref(x0|c))],

(17)

1a → b denotes that a precedes b in the ranking implied by the reward
model.



Algorithm 2: Curriculum DPO (for diffusion models)
Input: {(x0,i, c)}Mi=1 - the training samples, rφ(x0, c) - the reward model which can be conditioned on c, B - the

number of batches for splitting the set of pairs, ωt,εt - the parameters of the noise schedule, T - the last time
step of diffusion, ↼ - DPO hyperparameter to control the divergence from the initial pre-trained state, ε - the
sigmoid function, ↽ - the learning rate, {Hk}Bk=1 - the number of training iterations after including the k-th
batch.

Output: ⇀ - the trained weights of the generative model.
1 X̂ ⇐ {(x0,i, c)|rφ(x0,i, c) ⇒ rφ(x0,i↑1, c), i = {2, 3, ...,M}}; ↭ sort the samples in descending order of the rewards

2 S ⇐
{
(x0,i, x0,j , c)|i, j ↔ {1, . . .M}; i < j;x0,i, x0,j ↔ X̂, rφ(x0,i, c) > rφ(x

l
0,j , c)

}
; ↭ create pairs of examples

using the order from X̂

3 Lk ⇐
{

(M↑1)·(B↑k)
B

}B

k=1
; ↭ the minimum preference limits of the batches

4 Rk ⇐
{

(M↑1)·(B↑(k↑1))
B

}B

k=1
; ↭ the maximum preference limits of the batches

5 Sk ⇐
{
(x

w
0 , x

l
0, c)|(xw

0 , x
l
0) = (x0,i, x0,j); Lk < j ↓ i ⇒ Rk; (x0,i, x0,j , c) ↔ S

}B

k=1
; ↭ the batches of increasingly

difficult pairs
6 P ⇐ ⇑; ↭ current training set
7 foreach k ↔ {1, . . . , B} do
8 P ⇐ P ⇓ Sk; ↭ include a new batch in the training
9 foreach i ↔ {1, . . . , Hk} do

10 (x
w
0 , x

l
0, c) → U(P ); t → U{1, . . . , T}; ϑw, ϑl → N (0, I);

11 x
w
t ⇐ ωtx

w
0 + εtϑ

w; ↭ forward process
12 x

l
t ⇐ ωtx

l
0 + εtϑ

l; ↭ forward process
13 LDiff-DPO(⇀) ⇐

↓
[
log ε

(
↓↼T

((
↑ϑw↓↑22 ↓ ↑ϑw ↓ ϑ

w
ref (x

w
t , t, c)↑22

)
↓
(
↑ϑl ↓ ϑ

l
ε(x

l
t, t, c)↑22 ↓ ↑ϑl ↓ ϑ

l
ref (x

l
t, t, c)↑22

)))]
;

↭ DPO loss
14 ⇀ ⇐ ⇀ ↓ ↽

↼LDiff-DPO
↼ε ; ↭ update the weights

15 return ⇀

where ↼ controls the importance of the divergence term.

To derive the DPO objective, Rafailov et al. [48] write
the optimal policy model p↗ε of Eq. (17) as a function of
the reward and reference model, as shown in prior works
[45, 46]:

p
↗
ε(x0|c) =

pref(x0|c) · exp
(

r(x0,c)
↽

)

Z(c)
, (18)

where Z(c) =
∑

x0
pref(x0|c) · exp

(
r(x0,c)

↽

)
is a normal-

ization constant. Further, from Eq. (18), Rafailov et al. [48]
rewrite the reward as:

r(x0, c) = ↼

(
log

p
↗
ε(x0|c)

pref(x0|c)
+ logZ(c)

)
. (19)

Finally, the DPO objective is obtained after replacing the
reward in Eq. (16) with the form from Eq. (19):

LDPO(⇀)=↓Exw
0 ,x

l
0,c

[
logε

(
↼

(
log

pε(x
w
0|c)

pref(x
w
0|c)

↓log
pε(x

l
0|c)

pref(x
l
0|c)

))]
,

(20)
To grasp the intuition behind LDPO, we can analyze its gradi-

ent with respect to ⇀:

⇁LDPO(⇀)

⇁⇀
=↓ ↼Exw

0 ,xl
0,c


ε

r̂ε(x

l
0, c)↓ r̂ε(x

w
0 , c)


·

(
⇁ log pε(x

w
0 |c)

⇁⇀
↓ ⇁ log pε(x

l
0|c)

⇁⇀

)
,

(21)

with r̂ε(x0, c) = ↼ · log pω(x0|c)
pref(x0|c) . By analyzing Eq. (21),

as discussed in [48], it is evident that the DPO objective
enhances the likelihood of favored examples, while dimin-
ishing it for the unfavored ones. The magnitude of the update
is proportional to the error in r̂ε. Here, the term “error” refers
to the degree to which r̂ε incorrectly prioritizes the sample
x
l
0.

7. Curriculum DPO for Diffusion Models
We formally present the application of Curriculum DPO to
diffusion models in Algorithm 2. The initial steps 1-9, which
outline the curriculum strategy, are identical with those used



A bicycle on top 
of a boat

Illustration of a 
mouse using a 
mushroom as 
an umbrella

A cube made of 
brick. A cube 

with the texture 
of brick.

A blue 
coloured 

pizza.

A small blue book 
sitting on a large 

red book.

An emoji of a 
baby panda 

wearing a red 
hat, green 

gloves, red shirt, 
and  green 

pants.

Baseline

DDPO

DPO

Curriculum 
DPO

Photo of an 
athlete cat 

explaining it's 
latest scandal at 

a press 
conference to 

journalists.

A brown bird and 
a blue bear.

Naive 
Consistency

 DPO

Figure 4. Qualitative results before and after fine-tuning for the text alignment task on DrawBench. The fine-tuning methods are: DDPO,
DPO, Naive DPO and Curriculum DPO. Best viewed in color.

in the implementation for consistency models described in
Algorithm 1. Steps 10-14 are changed to include the forward
process for the preferred and less preferred samples, along
with the Diffusion-DPO loss defined in Eq. (5).

8. Importance of Consistency-DPO
Our work makes two contributions: Curriculum DPO and
Consistency-DPO. While the novelty and importance of Cur-
riculum DPO is more obvious, we consider that the signifi-
cance of Consistency-DPO is not immediately observable.
To this end, it is important to note that the Diffusion-DPO
[72] approach cannot be directly applied to consistency mod-
els. The most direct modification is to substitute the noise
estimation in the Diffusion-DPO objective with the consis-
tency distillation loss used in consistency models. However,
applying this modification directly breaks the consistency
property required by these models and leads to poor results,
as shown in Figure 4 and further discussed in Section 10.

We found two solutions for this problem. The first is
to reintegrate the consistency distillation for both preferred
and non-preferred samples as separate components within
the optimization function, in addition to the Consistency-

DPO loss (Eq. (6)). This method, however, introduces the
need for additional hyperparameters to balance these terms,
which represents a significant drawback because it requires
extensive hyperparameter tuning.

The second solution, which we ultimately adopt in our
study, is to ensure the initial estimation for the ODE’s start-
ing point (the target in the consistency distillation loss) is a
sample of the consistency model that undergoes fine-tuning.
We accomplish this by replacing the Exponential Moving
Average (EMA) model, that is typically used to get this esti-
mation, with the pre-trained model from which we begin the
fine-tuning process. This approach maintains the integrity of
the consistency model’s properties throughout the training.

We thus conclude that adapting DPO to consistency mod-
els is not trivial, since the adaptation requires a deep under-
standing of the framework and strong knowledge about the
use of gradients.

9. More Quantitative Results
Results on Pick-a-Pic. We report additional results for Sta-
ble Diffusion on 150,000 image pairs from Pick-a-Pic (D3)
in Table 4. In this scenario, the dataset already includes pairs
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Figure 5. Qualitative results after fine-tuning with HPSv2 as the reward model (human preference). The fine-tuning alternatives are: DDPO,
DPO and Curriculum DPO. Best viewed in color.

Fine-Tuning Text Aesthetics Human
Strategy Alignment Preference

- 0.5246 5.6675 0.2673
DDPO 0.5317 5.6764 0.2717
DPO 0.5328 5.7593 0.2725

Curriculum DPO (ours) 0.5413 5.7998 0.2783

Table 4. Text alignment, aesthetic and human preference scores
on Pick-a-Pic (D3), obtained by the baseline (pre-trained) Stable
Diffusion model versus the three fine-tuning strategies: DDPO,
DPO and Curriculum DPO. The best scores are highlighted in bold.

Fine-Tuning Strategy LLaVA Phi-3

- 0.6804 0.6804
DDPO 0.7629 0.7602
DPO 0.7614 0.7643

Curriculum DPO (ours) 0.7703 0.7736

Table 5. Text alignment results on dataset D1 by using two reward
models (LLaVA and Phi-3) for DDPO, DPO and Curriculum DPO
applied on Stable Diffusion. The best scores are highlighted in
bold.

of winning and losing images, so we only apply the reward
models for the ranking described in Figure 1. The results
reported on D3 are consistent with those reported on D1

and D2, further highlighting the importance of curriculum
learning.
Results with different reward models. In Table 5, we

compare text alignment results for two alternative reward
models: LLaVA [33] and Phi-3 [1]. During training, we
use a reward model to extract image descriptions and then
measure their similarity to the original prompts to produce
winning and losing image pairs. The same similarity scores
also determine the ranking used by Curriculum DPO. These
experiments further confirm the superiority of Curriculum
DPO over DPO and DDPO, regardless of the employed
reward model.

10. More Qualitative Results
In Figures 5 and 6, we present qualitative results after fine-
tuning the models with HPSv2 and LAION Aesthetics Pre-
dictor as reward models on D1, respectively. Fine-tuning for
human preference (Figure 5) generally results in generating
images with more details for the LCM model. Curricu-
lum DPO, in particular, produces better aesthetics for both
foreground objects and the background. In contrast, the SD
results show a better alignment with the text prompt, Curricu-
lum DPO being the only method that generates the ant on a
bike displayed in the last column. Fine-tuning for improving
the visual appeal (Figure 6) returns in general, as expected,
better aesthetics for the animals. However, Curriculum DPO
returns several examples that look better, e.g. the camel in
the sixth column and the dog in the third column.

In Figure 4, we show qualitative results when fine-tuning
the model for text alignment on D2. In addition to the base-
line, DPO, DDPO and Curriculum DPO results, we also
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Figure 6. Qualitative results after fine-tuning with the LAION Aesthetics Predictor as the reward model. The fine-tuning alternatives are:
DDPO, DPO and Curriculum DPO. Best viewed in color.
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(a) Varying the learning rate for Curriculum DPO
on LCM.
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(b) Varying the number of LCM generation steps
for Curriculum DPO.
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(c) The progression of the aesthetic reward func-
tion during training with the DDPO method.

Figure 7. Additional ablation results for Curriculum DPO applied on LCM are depicted in Figure 7a and 7b. In Figure 7c, we show the
evolution of the reward score when training Stable Diffusion with DDPO. All experiments are carried out on DrawBench.

include the images generated by a naive implementation of
Consistency-DPO. This implementation refers to the most
direct adaptation of Diffusion-DPO to consistency models.
More precisely, we substitute the noise estimation in the
Diffusion-DPO objective with the consistency distillation
loss used in consistency models. However, applying this
modification directly breaks the consistency property re-
quired by these models and leads to bad results, as illustrated
in the 4th row of Figure 4.

11. Additional Ablations
Aside from the ablation results presented in Figure 3 and
Table 3 from the main article, there are a few other hyperpa-
rameters involved in the training process, such as the learning
rate and the number of steps used in the multi-step genera-

tion of LCM. We performed additional ablation studies on
the learning rate and the number of steps used by LCM, on
the DrawBench dataset, using M = 5 generated images per
prompt. The results presented in Figures 7a and 7b demon-
strate that, regardless of the chosen values, the outcomes con-
sistently surpass the baseline (see Table 6). We emphasize
that we did not try to tune these hyperparameters for Cur-
riculum DPO to avoid overfitting in hyperparameter space.
Moreover, we underline that some apparent hyperparameters
directly depend on already ablated hyperparameters. For
example, the hyperparameter B (ablated in Figure 3c) is the
only one that influences the minimum/maximum preference
limits Lk and Rk, which are computed in steps 3 and 4 of
both Algorithm 1 and Algorithm 2. Note that the equations
for Lk and Rk generate equally-sized batches, so the lim-



Figure 8. A screenshot of one of the annotation forms, showcasing the annotation interface for one text prompt and the four corresponding
images that are generated with alternative methods. The instructions are followed by the generated images, which are displayed on the same
row, side by side. The images are placed in a random order to obfuscate the methods used to generate the images. A radio button list allows
the users to input the rating for each generated image. Best viewed in color.



Model Fine-Tuning Strategy Text Alignment Aesthetics Human Preference

LCM

- 0.5602 5.8038 0.2610
DDPO 0.5627 5.9488 0.2780
DPO 0.5639 5.9611 0.2783

Curriculum DPO (ours) 0.5654 6.0038 0.2793

Table 6. Text alignment, aesthetic and human preference scores obtained on the DrawBench dataset by the baseline (pre-trained) LCM
versus the three fine-tuning strategies: DDPO, DPO and Curriculum DPO. The DDPO, DPO and Curriculum DPO methods use only 5
images per prompt during optimization. The best scores are highlighted in bold.

its change only when we change the number of curriculum
batches B. Therefore, ablating Lk and Rk is redundant.

In Figure 7c, we present the evolution of the reward score
during the Stable Diffusion training with DDPO. For DPO
and Curriculum DPO, we did not preserve the reward curves,
as these methods did not involve multiple queries to the
reward models. Instead, they rely solely on the original ex-
ample ranking throughout the entire training process. Thus,
additional queries to the reward models are unnecessary for
DPO and Curriculum DPO. This represents an advantage of
these methods over DDPO.

12. Human Evaluation Study
In the human evaluation study, participants were asked to
rate generated images from two perspectives: prompt align-
ment and aesthetics. The images were generated either with
SD or LCM. We created a separate annotation form contain-
ing 80 text prompts for each (task, generative model) pair,
resulting in four independent annotation forms. For each
generative architecture, there are four images per prompt:
one from each fine-tuning strategy (DDPO, DPO and Cur-
riculum DPO), along with another one corresponding to the
pre-trained generative model. For each prompt, the images
were displayed in a random order, preventing annotators
from knowing which strategy was used to generate a certain
image. The users were asked to rate each image with an
integer grade between 1 and 5, as shown in Figure 8. The
evaluation instructions were customized for each task. For
text alignment, we requested the annotators to give their
ratings based on how closely each generated image matches
the accompanying text prompt. For aesthetics, the partici-
pants were asked to compare the images and rate each one
according to their personal preference.

Since there are four images for each prompt and an an-
notation form comprises 80 prompts, the number of images
to be annotated in one form is 320. Each form was com-
pleted by nine human evaluators, yielding a total of 2,880
annotations per experiment (form). Since we conducted the
study on two generative models (SD and LCM) and two
tasks (prompt alignment and aesthetics), the total number of
collected annotations is 11,520.

The average time to complete the annotations for a single

form is around 15-20 minutes. The nine human annota-
tors who agreed to complete the annotation forms are either
close collaborators, family members or friends of the authors.
They volunteered to perform the annotations for free. To
make sure that the annotations are relevant, we computed the
inter-rater agreement, obtaining a Kendall Tau correlation
coefficient of 0.34. This translates into 69.8% of all image
pairs being concordant among annotators. Additionally, we
performed statistical testing for the evaluations, and found
that the voting results are statistically significant, at a p-value
below 0.005.

13. Scalability
In the ablation study presented in Figure 3d of the main
paper, we examine the visual appeal reward when we vary
the numbers of generated images per prompt. Here, we pro-
vide a more detailed analysis of the extreme case based on 5
images per prompt, comparing Curriculum DPO with all the
other fine-tuning strategies across all the three studied tasks.
The results shown in Table 6 confirm that our method, Cur-
riculum DPO, surpasses the competing methods even when
the number of image samples per prompt is low. Therefore,
we conclude that our training strategy does not require a high
number of generated images per prompt to outperform DPO
and DDPO.

14. Limitations
One limitation of our model is the introduction of additional
hyperparameters, such as B or K. These might require tun-
ing in order to find the optimal values, which involves more
computing power. However, in the ablation study from Sec-
tion 4, we demonstrate that Curriculum DPO outperforms all
baselines for multiple hyperparameter combinations. There-
fore, suboptimal hyperparameter choices can still improve
the generative models.

A limitation of text-to-image generative models (as well
as reward models) is the poor ability to disambiguate words
in the input prompt. This can be observed especially in the
prompt alignment task, where a word with multiple mean-
ings or connotations leads to generating poor results. For
example, the prompt “a turkey riding a bike” often results in
images of a cooked meal instead of a live bird. Curriculum



DPO does not address this generic limitation of generative
and reward models.

15. Broader Impact
Generative models can be a valuable asset in many scenarios,
ranging from boosting the productivity of creative tasks to
being integrated in applications that are used on a daily basis
(such as image restoration or super-resolution). Nevertheless,
it might also represent a great source of fake data aiming
for disinformation and impersonation, especially when the
model is optimized to human preferences. In the recent years,
an increase in deep fake materials flooded the Internet, with
attackers aiming to spread false information or even steal
sensitive information by posing as another entity or person.

While we strongly believe in the benefits of very capable
generative models, we are aware of the potential risks. How-
ever, we can see that governments are working very closely
with academia and industry on safely developing artificial
intelligence, and thus observe and support the increasing
focus on models that detect AI-generated content to miti-
gate the aforementioned risks. Notably, the ultimate goal
of the project that funded our research is to develop robust
deepfake detectors.
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