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1. Network
1.1. Identity Reference Network Details

Maintaining subject consistency in diffusion transformer
based video generation presents a significant challenge,
particularly as video length increases. While integrating
speech audio embeddings as conditional features aids in
aligning facial movements with audio, prolonged genera-
tion often results in a degradation of facial identity fidelity.

To address this issue, we propose an identity reference
network within the diffusion transformer framework de-
signed to preserve facial identity coherence in realistic por-
trait animation. Figure 1 illustrates various strategies for
identity preservation after 10 seconds of video generation:
(a) No Identity Condition. In the absence of identity con-
ditions, the model struggles to maintain adequate portrait
coherence after 10 seconds.
(b) Face Attention. Incorporating features from the face
encoder InsightFace [3] into the cross-attention module ef-
fectively captures high-level features—such as the appear-
ance of age indicated by wrinkles in the reference image.
However, this method still results in noticeable alterations
to the subject’s appearance.
(c) Face Adaptive Norm. Here, face embeddings obtained
from InsightFace [3] are injected via an adaptive layer nor-
malization technique. However, this approach also fails to
preserve the subject’s identity by emphasizing overall vi-
sual context at the expense of specific portrait features, po-
tentially leading to distortion.
(d) Identity Reference Network. Our proposed identity
reference network comprises several transformer blocks,
each containing adaptive layer normalization layers, a 3D
full attention layer, and a feed-forward layer. We first em-
ploy a 3D VAE to encode the reference image, then input
these latent features into the identity reference network to
extract reference image features. These features are con-
catenated with the input features of the 3D full-attention
layer in the denoising network, allowing the reference im-
age features to be injected through the 3D full-attention
module. Our identity reference network effectively encodes

reference images, preserving detailed identity and back-
ground features (e.g., the text “CPS”). However, it tends
to introduce a smoothing effect that compromises finer de-
tails, such as wrinkles in the portrait.
(e) Face Attention and Identity Reference Network. Fi-
nally, we combine the identity reference network with the
face encoder to incorporate higher-level semantic features.
This integration enhances the portrait’s characteristic at-
tributes while maintaining identity fidelity.

1.2. Training Details

The training process comprises two phases:
(1) Identity Consistency Phase. In this initial phase, we
train the model to generate videos with consistent identity.
The parameters of the 3D Variational Autoencoder (VAE)
and face image encoder remain fixed, while the parameters
of the 3D full attention blocks in both the reference and de-
noising networks, along with the face attention blocks in
the denoising network, are updated during training. The
model’s input includes a randomly sampled reference image
from the training video, a textual prompt, and the face em-
bedding. The textual prompt is generated using MiniCPM
[14], which describes human appearance, actions, and de-
tailed environmental background. The face embedding is
extracted via InsightFace [3]. With these inputs, the model
generates a video comprising 49 frames.
(2) Audio-Driven Video Generation Phase. In the sec-
ond phase, we extend the training to include audio-driven
video generation. We integrate audio attention modules into
each transformer block of the denoising network, while fix-
ing the parameters of other components and updating only
those of the audio attention modules. Here, the model’s in-
put consists of a reference image, an audio embedding, and
a textual prompt, resulting in a sequence of 49 video frames
driven by audio.
Implementation Details. We initialize the identity refer-
ence and denoising networks with weights derived from
CogVideoX-5B-I2V [13]. During both training phases, we
employ the v-prediction diffusion loss [6] for optimization.
Each training phase comprises 20,000 steps, utilizing 64
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(a)

Reference Image Generated Frame Sequence

(b)

(c)

(d)

(e)

10s

Figure 1. Qualitative study of different setting of the identity injection method. Selected frames begin at 10s. (a) No identity condition: No
specific conditions are applied to control the subject’s appearance; (b) Face attention: Identity features from InsightFace [3] are processed
through a cross-attention module; (c) Face adaptive norm: Identity features from InsightFace [3] are incorporated via adaptive layer
normalization, applied through scaling and shifting.; (d) Identity reference network: Features are encoded using a reference network
and integrated within the 3D full attention module.;(e) Face attention and identity reference network: Identity features are encoded
separately via the InsightFace [3] and the reference network. These encoded features are then integrated within the 3D full attention
module and processed through a cross-attention mechanism.

NVIDIA A100 GPUs. The batch size per GPU is set to
1, with a learning rate of 1 × 10−5. The resolution of the
training videos is 480 x 720 pixels. To enhance video gen-
eration variability, the reference image, guidance audio, and
textual prompt are dropped with a probability of 0.05 during
training.

2. Experiments
2.1. Experimental Setup Details

Evaluation Metrics. We employed a range of eval-
uation metrics for generated videos across benchmark

datasets, including HDTF and Celeb-V. These metrics com-
prise Fréchet Inception Distance (FID) [7], Fréchet Video
Distance (FVD) [10], Synchronization-C (Sync-C) [1],
Synchronization-D (Sync-D) [1], and E-FID [9]. FID and
FVD quantify the similarity between generated images and
real data, while Sync-C and Sync-D assess lip synchroniza-
tion accuracy. E-FID evaluates image quality based on fea-
tures extracted from the Inception network.

Besides, we introduced V-bench [4] metrics to enhance
evaluation, focusing on dynamic degree and subject con-
sistency. Dynamic degree is measured using RAFT [8] to
quantify the extent of motion in generated videos, provid-
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Audio Text Image Sync-C↑ Sync-D↓ Subject
Dynamic↑

Background
Dynamic↑

Subject
FVD↓

Background
FVD↓

Subject
Consistency↑

λt ↓ λa = 3.5 λt = 1.0 λi = 1.0 6.168 8.589 13.164 3.955 ↓ 361.582 263.416 0.9813
Base λa = 3.5 λt = 3.5 λi = 1.0 6.154 8.574 13.286 4.481 359.493 248.283 0.9810
λt ↑ λa = 3.5 λt = 6.0 λi = 1.0 6.044 8.861 13.616 4.659 ↑ 342.894 235.307 0.9808
λa ↑ λa = 6.0 λt = 3.5 λi = 1.0 6.469 ↑ 8.515 14.778 4.066 379.073 264.969 0.9809
λi ↑ λa = 3.5 λt = 3.5 λi = 3.5 6.023 8.654 12.599 4.219 367.225 265.414 0.9835 ↑

Table 1. Quantitative study of audio, text and image CFG scales on our proposed wild dataset.

ing a comprehensive assessment of temporal quality. Sub-
ject consistency is measured through DINO feature simi-
larity, ensuring uniformity of a subject’s appearance across
frames.

Baseline Approaches. We considered several representa-
tive audio-driven talking face generation methods for com-
parison, all of which have publicly available source code or
implementations. These methods include SadTalker [15],
DreamTalk [5], AniPortrait [11], and Hallo [2, 12]. The
selected approaches encompass both GANs and diffusion
models, as well as techniques utilizing intermediate facial
representations alongside end-to-end frameworks. This di-
versity in methodologies allows for a comprehensive evalu-
ation of the effectiveness of our proposed approach in com-
parison to existing solutions.

2.2. Ablation and Discussion

CFG Scales for Diffusion Model. Table 1 provides a
quantitative analysis of video generations using various
CFG scales for audio, text, and reference images. A com-
parison between the second and fourth rows demonstrates
that increasing the audio CFG scale enhances the model’s
ability to synchronize lip movements. The text CFG scale
significantly influences the video’s dynamism, as indicated
in the first three rows, where both the subject’s and the back-
ground’s dynamics increase with higher text CFG scales.
Conversely, the reference image CFG scale primarily gov-
erns the subject’s appearance; higher values improve sub-
ject consistency, as illustrated by the second and fifth rows.
Among the tested configurations, setting λa = 3.5, λt =
3.5, and λi = 1.0 yields a balanced performance. This in-
terplay between visual fidelity and dynamics underscores
the effectiveness of CFG configurations in generating real-
istic portrait animations.

2.3. Generation Controllability

Textual Prompt for Subject Animation. To evaluate
whether textual conditional controllability is effectively
preserved, we conducted a series of experiments compar-
ing the performance of our method to that of the base-
line model, CogVideoX [13], using same text prompts. As
shown in Figure 2, the white number represents the BLIP
score, which measures how well the generated videos align

with the textual prompts. A higher score indicates better
alignment. The results shows that our model maintains its
ability for textual control, achieving a BLIP score compara-
ble to that of CogVideX, and effectively captures the inter-
action between different subjects as dictated by the textual
prompts.
Textual Prompt for Foreground and Background Ani-
mation. We also explore model’s ability to follow the fore-
ground and background textual prompt. As illustrated in
Figure 3, our method animates the foreground and back-
ground subjects naturally, such as the ocean waves and
flickering candlelight. The results demonstrates the model’s
ability to control foreground, and background with the tex-
tual caption, which is maintained even after introducing the
audio condition.

2.4. Limitations and Future Works.

Despite the advancements in portrait image animation
techniques presented in this study, several limitations war-
rant acknowledgment. While the proposed methods im-
prove identity preservation and lip synchronization, the
model’s ability to realistically represent intricate facial ex-
pressions in dynamic environments still requires refine-
ment, especially under varying illumination conditions. Fu-
ture work will focus on enhancing the model’s robustness
to diverse perspectives and interactions, incorporating more
comprehensive datasets that include varied backgrounds
and facial accessories. Furthermore, investigating the in-
tegration of real-time feedback mechanisms could signifi-
cantly enhance the interactivity and realism of portrait an-
imations, paving the way for broader applications in live
media and augmented reality.

3. Safety Considerations.
The advancement of portrait image animation technolo-

gies, particularly those driven by audio inputs, presents sev-
eral social risks, most notably concerning the ethical impli-
cations associated with the creation of highly realistic por-
traits that may be misused for deepfake purposes. To ad-
dress these concerns, it is essential to develop comprehen-
sive ethical guidelines and responsible use practices. More-
over, issues surrounding privacy and consent are prominent
when utilizing individuals’ images and voices. It is imper-
ative to establish transparent data usage policies, ensuring

3
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A young boy glows 

with happiness as he 

prepares to blow out 

candles on his 

birthday cake. 

Ours CogVideoX

A young girl with 

blonde hair embraces 

her beautiful brown 

horse in a tender 

moment. 

An elderly man 

enjoys the company 

of vibrant birds 

perched on his arms 

in nature.

Reference Prompt

A young girl with a 

charming smile 

wearing a straw hat 

cuddles her white 

rabbit.
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Figure 2. Condition on Interactive Subjects. The white number represents the BLIP score, which measures the alignment between the
generated video and the textual prompts. A higher value indicates a better alignment. Our method achieves alignment comparable to that
of CogVideX, maintaining the controllability of interactive subjects even after introducing the audio condition.

Ours CogVideoX

A cheerful man wearing a 

floral shirt and sunglasses 

enjoys the beautiful 

beachside scenery, with 

waves gently lapping 

against the shore.

A radiant young woman 

smiles brightly, surrounded 

by a vibrant field of 

blooming sunflowers, their 

golden petals swaying 

gently in the breeze.

Ref. Image Prompt

A young boy glows with 

happiness as he prepares to 

blow out candles on his 

birthday cake, their flames 

dancing and flickering 

gently in the soft glow of 

the room.
A stylish woman in a floral 

dress and sunglasses enjoys 

a serene moment on a 

sunny ocean, as gentle 

waves ripple against the 

shore, sparkling under the 

sunlight.
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0.3625

0.4078
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0.4028

0.3617

0.4094
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0.3944

Figure 3. Textual Condition on Foreground and Background. The white number represents the BLIP score, which measures the alignment
between the generated video and the textual prompts. A higher value indicates a better alignment. Our method achieves alignment
comparable to that of CogVideX, maintaining the controllability of foreground and background after incorporating the audio condition.

that individuals provide informed consent and that their pri-
vacy rights are fully protected. By acknowledging these
risks and implementing appropriate mitigation strategies,
this research aims to promote the responsible and ethical
development of portrait image animation technology.
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