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A. Detailed Experimental Results
Due to page limitations, we could not fully present the per-
scene experimental results in the main text. Instead, we pro-
vide the complete experimental results in the supplemen-
tary part: the per-scene results for the LOM dataset low-
light scene are shown in Table. II, it can be observed that
our method achieves excellent performance in most scenar-
ios. Additionally, we found that Aleth-NeRF [4] is sen-
sitive to hyper-parameter, for instance, if the enhance de-
gree of Aleth-NeRF is set to a slightly lower value (e.g.,
reduced from 0.45 to 0.4), its PSNR value significantly de-
creases as well (see Table. II). The results for overexposure
scenes in the LOM dataset are presented in Table. III, and
the other 4 scenes results for our synthesized varying ex-
posure dataset are shown in Table. I. We can see that our
Luminance-GS both achieves SOTA performance in PSNR,
SSIM and LPIPS.

More visualization results are shown in Fig. III, Fig. IV
and Fig. V, we can found that sometimes image restora-
tion modules easily lead to multi-view inconsistency, which
ultimately causes floaters during rendering (see Fig. IV
“MSEC [1] + 3DGS” for example). Meanwhile, our method
achieves better detail reconstruction results compared to
other approaches. We have zoomed in on random areas
to enlarge the details and demonstrate the superior perfor-
mance of our detail recovery.

B. Ablation Analysis of Loss Functions
We further assess the effectiveness of various loss func-
tions in our Luminance-GS model. Figure II illustrates this
through the “sofa” scene, showcasing examples under both
low-light and overexposure conditions.

From Fig. II, we can find that spatial loss Lspa (Eq.8 in
main text) plays a crucial role in maintaining multi-view
consistency, after removing loss Lspa, the rendered scenes
tend to exhibit large areas of floaters, which become partic-
ularly pronounced under low-light conditions. Meanwhile,
in curve loss Lcurve (Eq.10 in main text), the cumulative
distribution function (CDF) Lcdf of the histogram-equalized

Figure I. The limitation of our method, in some cases, Luminance-
GS fails to correctly render colors, resulting in color discrepancies
in certain areas and the occurrence of pixelation.

(HE) 𝐶𝑖𝑛 (𝑥) is essential for controlling the degree of illu-
mination. Without Lcdf , efforts to enhance or attenuate il-
lumination are often unsuccessful. Additionally, the pre-
defined curve shape L𝑝𝑜 · L𝑠 (Eq.9 in main text) main-
tain the smoothness of the generated images, reducing the
likelihood of large areas of pixels collapsing into a single
value, ensuring the generated images more aligned with hu-
man visual perception. Ultimately, with the assistance of all
the aforementioned losses, we can achieve satisfactory ren-
dered novel views, as shown in the last column of Fig. II.

C. Experimental Setup
For training settings, we trained Luminance-GS on a single
Nvidia Tesla V100 GPU using the Adam optimizer. The
learning rates for the various parameters were set as follows:
• For the basic 3DGS parameters 𝐺𝑖 = {𝜇𝑖 , 𝑐𝑖 , 𝑜𝑖 , Σ𝑖} , we

adopted the default settings from GS-Splat [10].
• The learning rates for the color adjustment parameters a𝑖

and b𝑖 were set to 2.5 × 10−3.
• The learning rate for the color space mapping matrix M𝑘

was set to 2.5 × 10−4, with a weight decay of 1 × 10−5.
• The global curve L𝑔 was optimized with a learning rate

of 1 × 10−3 and a weight decay of 1 × 10−4.
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Figure II. Ablation analysis of different loss functions in Luminance-GS, we denote PSNR↑/ SSIM↑/ LPIPS↓ value upon the figures.

Table I. Other 4 scenes results on varying exposure unbounded
dataset, we show the PSNR ↑, SSIM ↑ and LPIPS ↓. Red indicates
the best result, while blue indicates the second-best result.

Methods “bonsai” “kitchen” “room” “stump”

3DGS 19.05/ 0.699/ 0.403 18.54/ 0.703/ 0.398 19.66/ 0.812/ 0.356 18.12/ 0.698/ 0.366

NeRF-W 14.11/ 0.529/ 0.633 12.87/ 0.451/ 0.502 13.09/ 0.355/ 0.498 14.11/ 0.495/ 0.688

Aleth-NeRF 10.09/ 0.377/ 0.709 9.58/ 0.410/ 0.698 7.22/ 0.308/ 0.742 10.51/ 0.365/ 0.703

GS-W 19.78/ 0.698/ 0.363 18.55/ 0.722/ 0.369 19.32/ 0.794/ 0.386 18.35/ 0.721/ 0.350

Ours 19.77/ 0.709/ 0.351 18.47/ 0.751/ 0.348 20.44/ 0.811/ 0.331 18.64/ 0.732/ 0.344

• The learning rates for the two attention blocks (view-
adaptive curve generator and view-adaptive parameters
generator, as shown in Fig. 4 of the main text) were set to
1 × 10−5, with a weight decay of 1 × 10−5.

Training was conducted for a total of 10,000 iterations, with
Gaussian refinement stopping at 8,000 iterations. For other
settings, such as Gaussian reset steps [6], we adhered to the
default configuration provided by GS-Splat [10].

D. Limitation and Future Discussion

Some failure cases are shown in Fig. I. In certain scenes,
Luminance-GS may lose fine details, such as the leaves
of plants disappearing (see Fig. I above). Additionally,
Luminance-GS sometimes renders incorrect colors and can
exhibit pixelated artifacts, as seen in the chair’s color in
Fig. I below. This could be due to errors in the pseudo-labels
generated by curve L, and we hope that future research
can optimize both the training strategy and the pseudo-label
generation solution.

For future research directions, we think that it would
be valuable to consider more scenarios of internal cam-
era degradation, such as inconsistent white balance set-
tings. Exploring how to enable scene generalization with

Luminance-GS is also a promising direction. Additionally,
we believe that extending Luminance-GS to real-world ap-
plications, such as autonomous driving and underground
coal mining scenarios, would be highly meaningful.
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Table II. Per-scene experimental results (PSNR ↑, SSIM ↑, LPIPS ↓) on LOM dataset [4] low-light subset, we compare with various
enhancement methods [5, 7, 9, 12, 13] and NeRF-based methods [4, 15]. (*: The results of work [15] are directly taken from their paper).
Red indicates the best result, while blue indicates the second-best result.

Method
“buu” “chair” “sofa” “bike” “shrub” mean

PSNR/ SSIM/ LPIPS PSNR/ SSIM/ LPIPS PSNR/ SSIM/ LPIPS PSNR/ SSIM/ LPIPS PSNR/ SSIM/ LPIPS PSNR/ SSIM/ LPIPS

3DGS [6] 7.53/ 0.299/ 0.442 6.06/ 0.151/ 0.742 6.31/ 0.216/ 0.723 6.37/ 0.077/ 0.781 8.15/ 0.044/ 0.620 6.88/ 0.157/ 0.662

Image Enhancement Methods + 3DGS

3DGS + Z-DCE [5] 18.02/ 0.834/ 0.303 12.55/ 0.725/ 0.478 14.66/ 0.822/ 0.460 10.26/ 0.509/ 0.491 12.93/ 0.468/ 0.309 13.64/ 0.672/ 0.408

Z-DCE [5] + 3DGS 17.83/ 0.874/ 0.350 12.47/ 0.762/ 0.399 13.86/ 0.841/ 0.308 10.37/ 0.544/ 0.441 12.74/ 0.487/ 0.248 13.45/ 0.702/ 0.349

3DGS + SCI [7] 13.80/ 0.845/ 0.339 19.70/ 0.812/ 0.455 19.63/ 0.851/ 0.455 12.86/ 0.621/0.463 16.14/ 0.600/ 0.442 15.22/ 0.748/ 0.430

SCI [7] + 3DGS 7.68/ 0.690/ 0.523 11.69/ 0.794/ 0.419 10.02/ 0.770/ 0.365 13.55/ 0.667/ 0.390 15.72/ 0.538/ 0.339 11.73/ 0.692/ 0.407

3DGS + NeRCo [9] 16.64/ 0.765/ 0.401 19.24/ 0.759/ 0.466 16.77/ 0.834/ 0.399 16.33/ 0.700/ 0.427 17.07/ 0.503/ 0.411 17.21/ 0.712/ 0.421

NeRCo [9] + 3DGS 16.69/ 0.802/ 0.330 19.11/ 0.773/ 0.376 18.04/ 0.868/ 0.381 16.16/ 0.703/ 0.397 17.97/ 0.502/ 0.399 17.59/ 0.727/ 0.345

Video Enhancement Methods + 3DGS

LLVE [12] + 3DGS 19.67/ 0.868/ 0.253 15.29/ 0.805/ 0.424 17.18/ 0.858/ 0.379 14.01/ 0.677/ 0.452 15.98/ 0.430/ 0.488 16.43/ 0.728/ 0.399

SGZ [13] + 3DGS 19.21/ 0.832/ 0.270 12.30/ 0.755/ 0.377 14.54/ 0.815/ 0.329 10.61/ 0.563/ 0.375 14.04/ 0.565/ 0.416 14.14/ 0.706/ 0.353

NeRF-based Enhancement Methods

AME-NeRF* [15] 19.89/ 0.854/ 0.312 17.05/ 0.751/ 0.381 17.93/ 0.847/ 0.378 18.14/ 0.732/ 0.437 15.23/ 0.462/ 0.518 17.65/ 0.729/ 0.405

Aleth-NeRF [4](0.45) 20.22/ 0.859/ 0.315 20.93/ 0.818/ 0.468 19.52/ 0.857/ 0.354 20.46/ 0.727/ 0.499 18.24/ 0.511/ 0.448 19.87/ 0.754/ 0.417

Aleth-NeRF [4](0.4) 19.14/ 0.839/ 0.306 16.96/ 0.793/ 0.483 16.97/ 0.847/ 0.367 17.56/ 0.719/ 0.468 17.55/ 0.484/ 0.451 17.64/ 0.736/ 0.415

Our Proposed Method

Luminance-GS 18.09/ 0.877/ 0.193 19.82/ 0.835/ 0.367 20.12/ 0.871/ 0.259 18.27/ 0.749/ 0.411 15.40/ 0.666/ 0.241 18.34/ 0.799/ 0.294

Table III. Per-scene experimental results (PSNR ↑, SSIM ↑, LPIPS ↓) on LOM dataset [4] overexposure scene, we compare with exposure
correction methods [1, 3, 14] and NeRF-based methods [4]. Red indicates the best result, while blue indicates the second-best result.

.

Method
“buu” “chair” “sofa” “bike” “shrub” mean

PSNR/ SSIM/ LPIPS PSNR/ SSIM/ LPIPS PSNR/ SSIM/ LPIPS PSNR/ SSIM/ LPIPS PSNR/ SSIM/ LPIPS PSNR/ SSIM/ LPIPS

3DGS [6] 6.96/ 0.674/ 0.609 11.14/ 0.790/ 0.362 10.17/ 0.790/ 0.369 9.58/ 0.730/ 0.323 10.34/ 0.646/ 0.299 9.64/ 0.726/ 0.392

Exposure Correction Methods + 3DGS

3DGS + MSEC [1] 16.03/ 0.806/ 0.517 20.81/ 0.851/ 0.408 20.65/ 0.862/ 0.397 22.10/ 0.826/ 0.305 18.21/ 0.678/ 0.289 19.56/ 0.805/ 0.382

MSEC [1] + 3DGS 15.08/ 0.804/ 0.440 16.63/ 0.797/ 0.416 20.09/ 0.828/ 0.335 17.57/ 0.739/ 0.368 16.61/ 0.666/ 0.255 17.20/ 0.767/ 0.363
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NeRF-based Exposure Correction Method

Aleth-NeRF [4] 16.78/ 0.805/ 0.611 20.08/ 0.820/ 0.499 17.85/ 0.852/ 0.458 19.85/ 0.773/ 0.392 15.91/ 0.477/ 0.483 18.09/ 0.745/ 0.488

Our Proposed Method

Luminance-GS 19.67/ 0.811/ 0.311 22.63/ 0.856/ 0.207 21.16/ 0.878/ 0.204 24.05/ 0.851/ 0.216 16.04/ 0.780/ 0.173 20.71/ 0.835/ 0.222
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Figure III. Novel view synthesis results in LOM dataset low-light “shrub” and “sofa” scenes, we show the comparison results with
3DGS [6], combination of low-light enhancement methods (SCI [7], SGZ [13]) with 3DGS and Aleth-NeRF [4].
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Figure IV. Novel view synthesis results in LOM dataset over-exposure “chair” and “bike” scenes, we show the comparison results with
3DGS [6], combination of exposure correction methods (MSEC [1], IAT [3]) with 3DGS and Aleth-NeRF [4].
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Figure V. Novel view synthesis results on our synthesized varying exposure unbounded dataset (from Mip-NeRF 360 dataset [2]) “kitchen”
and “bonsai” scenes, with comparison of 3DGS [6], Aleth-NeRF [4], NeRF-W [8] and GS-W [11].
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