Nonisotropic Gaussian Diffusion for Realistic 3D Human Motion Prediction
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A. Mathematical Derivations of our Non-

isotropic Gaussian Diffusion
A.l. Forward Diffusion Process

As mentioned in the main paper body, the Gaussian forward
transitions are defined as:

q(zi|mi_) = N(ze; Vg, , UANU ). (14)

allowing us to sample from a transition in dependence of
isotropic noise €; as:

1/2

Ty = oy +UA "€, (15)

We can further derive the tractable form of the for-

ward transitions q(x:|2() by recursively applying ;1 =

VO—1Ti—2 + UAiizlet—li

xr =i (Vor—_1Ti—o + UAiﬁet—l) + UAi/QEt
=\/@_t(\/at—1(\/at—2$t—3

+ UAigEt—ﬂ + UA%£2167:—1) + UAt1/2et 16)

=\/auxo + U./_Xi/zeo
~N (Vagwo, U(A)UT) = N (Vagmo, i),

where we exploit the fact that the isotropic noises can
be formulated as €_; ~ N(0,a;UA,_U"), ¢ ~
N(0,UA,U") and that the sum of two independent Gaus-
sian random variables is a Gaussian with mean equals the
sum of the two means and the variance being the sum of
the two variances. We have thus derived the Gaussian
form of the tractable forward diffusion process g(x¢|xo) =

N(arxo, UNUT) for

Ay =FAr+ (1 — o)l (17)
t t
Vi = Z’_Yt—iat__li H Q;
=0 ) Jj=t—1 (18)
=0y Z ;tt:: =Y + Y1 -



A.2. Reverse Diffusion Process

To perform inference, we need to find a tractable form for
the posterior ¢(@;_1|®:, o) in terms of &y. With the forms
of the Gaussian transitions, through Bayes rule

q(x¢|ai—1, 20)q(21—1]20)

q(xi_1|xs, ) = (19)
(el @) dlafo)
we can start the derivation of the posterior
N (@41 1, By) from

N(x; Jouwi—1, )N (211 V/O—1%0, Zi—1) 20)

N(mt; Voo, Et)

Differently from the conventional isotropic diffusion deriva-
tion, where this and subsequent derivations are carried out
for scalar variables thanks to the i.i.d. assumption, our ran-
dom variables are correlated and we have to deal with vecto-
rial equations. Hence the posterior mean p,, and covariance
33, cannot be derived straightforwardly.

To address this issue, we exploit the eigenvalue decom-
position of 3; and notice that the orthogonal matrix U is
a linear transformation preserving the inner product of vec-
tors by definition, and that thus the shape of the posterior
probability distribution g(a;_1|x;) stays the same in the
isometry of the Euclidean space given

z,=U'"z;. 1)

This allows us to ‘’rotate’ the posterior distribu-
tion q(x;_1|x;) by the transformation U and carry
out the derivation for a distribution ¢(&;—1|Z:) =
N(@¢-1; f1,,Ay) that now has a diagonal covariance
matrix A, = U' X,U. Now we can handle each dimen-
sion independently, since the matrices in the following
derivations are diagonal matrices and this allows us to
use the commutative property AjAs = AsA;. In the
following, we also make use of the observation:

Ay =o A1 + Ay (22)

The mean and variance of the posterior can thus be derived
in the isometry space as

q(Z1—1]T¢,20) (23)
I - 1~ -
X exp — 3 [(mt — \/atmt_l)TAt Y&y — Jog@e_1)
- _ <=1 . S
+H(Tio1 — \/at—lmO)TAt_l(-'Bt—l — Vo _1%g)
- — <=1, —
— (& — \/OétiUO)TAt (¢ — \/Oétmo)}
1r1. 1~ - 1~
=exp -5 |:m;[1atAt Yy - 22 oA '
T A1 . N S
+ 33:_1./\75_133,3_1 — 233:_1 \/Oét—lAt_le
+ 0(@,@0)}
Ir.r -1 AL 4
o exp — o {:ct_l (eAy "+ A, ) Eea
—_————
AG!
- 1~ 1 .
— 22 (VoA i + \/at_1At_1a:0)}
1. _1a
= exp — § |:$:71Aq 1$t_]_
- 1= ——
=22 | (VoA 8+ Va1 A, %)
1r. _1a
=&p 3 {*’BllAq Yay
- _ 1= I
-2z, 1A, AL (VarA E + mAt_ﬂ?o)]
: Ty—1 Ty—1 _
Comparing Eq.23)tox ' X "'z — 22 ' X" ' u+C = (z —

p) X" (x — p), we can describe the posterior with the
following Gaussian form:

q(it71|it7®0) :N(i'tfl;p/quq) (24)

_ —1
Ay = oA+ A

B . _ -1
= |:O[tAt71At,11At_l + AtAt_lAtflli|

_ -t (25)
:U%M4+mmgﬁﬁ]
=AM A (A + aAyq) 7!
2 AA A

fr, = Ag(Var AT & + Va1 A, &) (26)

AtAtfl(At + atﬂt,l)_l(\/atAt_lﬁzt + \/Oiétfll_x;,lljo>
11

Ay (VoA 1@y + a1 A Zo)

To obtain the previous definition of fi, and A, we make
use of the following equalities, that coincide wih our in-
tuition and understanding of denoising diffusion processes



and are reported for completeness:
Yt =7 + Oéﬁt 1

_’Yt‘l_atZ’Yt 1-— zat 1 —q H a]

j=t—1—1
= Z Ye—1-i0_ 1 i H Qj
i=—1 j=t—1—1
- t
+ Z '_Yt—l—iat__ll_i H o 27
i=0 j=t—1—i
t—1 t . ..
. Z _ ol H o | shift the 7 index
T2 i Y by 1=+ 1)
i=—1 j=t—1—1
t
_Z’Yt zat i H (&7

j=t—1

A= Ny1 + Ay
=ay (Fe—1 A1+ (1 — 1)) +
= (V-1 + ) A+ (a1 —ay—1) +
=Y A1+ (1 —ay) 1

(e A1 + (1 — aq)l)
(1—oy))I

(28)

S =X+ 3 (29)

We detail how to transform the new mean and covariance
into the original coordinate system:
2, =UAUT
=UAA, A 'UT
=UMU UA, .U UA,'U"
——
I
= ——1
=33 13,

(30)

ke =Uhy
=UA; ' (VarAi_1&; + /a1 Ao)
=UA; 'UTU (VoAU U, + a1 AU Ugg)

> _1(\/07155_%71% + Va1 3x0)
(31

A.3. Training objective

Denoising diffusion probabilistic models [31] are trained
by minimizing the negative log likelihood of the evidence
lower bound, which can be simplified to the KL divergence
between the posterior q(x;—1|x¢, o) and the learned re-
verse process pg(x;—1|x¢). Since the covariance matrix is

independent of 6, the KL-divergence can be expressed as
Mahalanobis distance

arg mgin Dx(q(xi—1]|e, o) ||po(Ti—1|2:))
(32)
[(He -

_ : Ty—1
= argmin 5 k) 2, (pe

o “q)] :

Regressing the true latent ©; We compute the KL diver-
gence in the isometry space with diagonal covariances as

arg mein Dy (q(Zi—1|®t, To)||po(E:—1|%+))

N R _ 1~ _
=arg m@ln 5 [(HG - p’q)TAq 1(”’9 - y’q)}

— [A7 vaia @ - .fzo)} ! A;l {A;l\/mzxt(a:e ~ )|

\/ﬁAt( Tg — wo)}

=& — &) (07&111;_11 - O_ét[\; ) [Zo — Zo]
. T =2 x =1y s -
= (&6 — @0 (| f_1|? Ay — | 12A; ") [Zo — &)
T

=[zg — &) (SNR(t— 1) — SNR(t)) [Zo — 2]

=l1Z6 — 2ol (sre—1) sty
=||Zo — &0 5
(33)

where we employ the definition of SNR(t)) = HﬂtHQAt_l
for the signal-to-noise ratio. The last line denotes the Maha-
lanobis distance between &g and &, with respect to a prob-
ability distribution with symmetric positive-definite covari-
ance matrix S = (SNR(t — 1) — SNR(#))~*

As in conventional diffusion training [31], we train di-
rectly with § = (SNR(t))~!, which in our case trans-
lates to S™1 = aA, b According to the spectral theo-
rem, for every positive-definite matrix A it holds A~! =
WTW. Since S is diagonal, the spectral theorem trans-

lates to 1 = §7V/2T8"12 — g A" with W =
—1/2 = Ja A -1/ = W and the Mahalanobis distance
becomes

arg min Dgy (¢(Z¢—1|Z+, To)||pe (Ts—1|2+))
’ < 1/2 G4
= |[W (&g — Zo)||” = au|| A, /" (Zo — &0)

Thus in the original coordinate system the final training ob-
jective can be defined as

I

arg min Dxi(q(@i—1|e, 0)||po(Ti—1]1))
o (35)
= a|A; U (g — o)



Regressing the noise €¢g We report here the necessary
equations for regressing the noise €g instead of the true la-
tent variable xy. By applying the reparameterization trick
in the isometry space we define

- 1 1/2
Lo = ——= (T — Ay € (36)
\/OTt( t )
By regressing the noise and considering the previous for-
mulation we derive the KL-divergence with an analogous
procedure.

argmein Dxi(q(@i—1|%1, To) |pe (Te—1]21))
A ~ 5 37
= [eo — €q] &—t(SNR(t —1) — SNR(%)) [eo — €6]
t
The training objective in the original covariance space is
given by

arg mein Dy (q(xi—1]|s, o) ||po(i—1|2:))

= [eo — €g] " %(SNR(t —1) — SNR(%)) [eo — €g] o9

A.4. Alternative Nonisotropic Formulations of 3,

In this section, we present formulations of the covari-
ance of the forward noising transitions p(x¢|xi—q1) =
N (zy; VorT_1, 3%;) alternative to our nonisotropic formu-
lation with scheduler ~; defined in Eq. (5). We report these
alternative formulations either because we ablate against
them, or because these were discarded in early research
stages. Note that for all formulations, the derivation of the
tractable forward and posterior still holds, just for a differ-
ent choice of A;.

A.4.1 Scheduler v; =1

The most straightforward case of nonisotropic Gaussian dif-
fusion can be obtained by setting ¢ = 1 in our Eq. (5)

Si=(1-a)Sy=U1—-a)ANU", (39

Ay =(1— o)Ay (40)

resulting in nonisotropic noise sampling for the last hier-
archical latent ¢ = 7. We highlight that this choice of
33, corresponds to performing conventional isotropic diffu-
sion (3; = ) in a normalized space where the dimensions
are not correlated anymore (for example through an affine
transformation disentangling the joint dimensions, or layer
normalization) and transform back the diffused features to
the skeleton latent space.

For the tractable form of the forward process p(x:|zo) =
N(Varxo, UNUT) it follows

Ay =(1—a)AyN 41)

The computation of the corresponding posterior exploits the
following equality:
A=Ay 1+ Ay
:O[t(]. — Oiltfl)AN + (]. — O[t)AN

=(a:(1—a—1)+ (1 —ar))An (42)
:(Oét — Qg1 + 1-—- Oét)AN
:(1 — @t)AN

A.4.2 Discarded Scheduler Formulation

As a preliminary study of our correlated diffusion approach,
we explored the following covariance:

Zt = ENO[t + H(l — Oét) (43)

As ¥, — I fort — T, we have an identity covariance
matrix in the final timestep. Adding large quantities of non-
isotropic noise in early diffusion timesteps as described did
not yield satisfactory results during experiments. Hence this
formulation was discarded at an early research stage. For
completeness, we report the covariances of the tractable for-
ward transition as

Ay =@ An + (1 —ay)l (45)
where
t t
& :Z H ;= (14 @ 1) (46)
i=0 j=t—i

B. Network architecture

SkeletonDiffusion’s architecture builds on top of Typed-
Graph (TG) convolutions [67], a type of graph convolutions
designed particularly for human motion prediction. The
conditional autoencoder consists of two shallow TG GRU
[67]. To obtain a strong temporal representation of arbitrary
length, thus fitting both observation and ground truth future,
we pass the encoder’s last GRU state to a TG convolutional
layer [67]. The denoiser network consists of a custom archi-
tecture of stacked residual blocks of TG convolutions and
TG Attention layers. Details are available through the code
implementation.

Typed Graph Attention We introduce Typed Graph At-
tention (TG Attention) as multi head self-attention deployed
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Figure 8. Qualitative Results on H36M through overlapping skele-
tons. Action labeled WalkTogether, segment n. 791. For each
method, we display the ground truth future (thicker skeleton) over-
lapped by the closest prediction and the two most diverse. See
Fig. 20 for a different visualization of the same qualitative.

through TG convolutions [67]. To compute scaled dot-
product attention as defined by Vaswani et al. [75] with
a scaling factor dy,

. QK”
Attention(Q, K, V) = softmax(
Vdy,

we define the query, key, and value matrices Q;,K;, V; €
R7*Pout for each head i with input & € R/*Pin;

Vo @)

Q; = f(RMS(x)),K; = f(RMS(x)), V; = f(RMS(x)),

(48)
where f denotes the TG convolution operation described in
Eq. (9) and RMS the Root Mean Square Norm (RMS)[92],
acting as a regularization technique increasing the re-
scaling invariance of the model [75, 92].

C. Training Details

The conditional autoencoder is trained for 300 epochs on
AMASS, 200 on FreeMan, and 100 on H36M. In the au-
toencoder training, to avoid collapse towards the motion
mean of the training data [9, 80], we employ curricular
learning [1, 8, 80] and learn to reconstruct sequences with
random length [, sampled from a discrete uniform distribu-
tion ] ~ U{1, F'}. Specifically, we increase the upper bound
of the motion length F to the original future timewindow F’
after the first 10 epochs with a cosine scheduler. The de-
noiser network is trained with 7' = 10 diffusion steps and

a learning rate of 0.005 for 150 epochs. We employ a co-
sine scheduler [59] for a; and implement an exponential
moving average of the trained diffusion model with a de-
cay of 0.98. Inference sampling is drawn from a DDPM
sampler [31]. Both networks are trained with Adam on Py-
Torch. The biggest version of our model (AMASS) consists
of 34M parameters and is trained on a single NVIDIA GPU
A40 for 6 days. For AMASS, we measure an inference time
of 471 milliseconds for a single batch on a NVIDIA GPU
A40, in line with the latest DM works.

D. Details on Experiment Settings
D.1. Metrics in Stochastic HMP

First, we want to evaluate whether the generated predictions
Y € RVXFxJ%3 include the data ground truth and define
precision metrics: the Average Distance Error (ADE) mea-
sures the Euclidean distance between the ground truth Y
and the closest predicted sequence

ADE(Y,Y) = min |[Y" — Y|z, (49)

while the Final Distance Error (FDE) considers only the fi-
nal prediction timestep F'

FDE(Y,Y) = min ||Y 5 — Y2 (50)

Because of the probabilistic nature of the task, we want to
relate the predicted motions not only to a single (determin-
istic) ground truth but to the whole ground truth data dis-
tribution. To this end, we construct an artificial multimodal
ground truth (MMGT) [5, 91], an ensemble of motions con-
sisting of test data motions that share a similar last observa-
tion frame. For a sample j in the dataset defined by a past
observation X and a ground truth future Y, if the distance
between the last observation frame and the last observation
frame of another sample m is below a threshold 4, the future
of that sample m is part of the multimodal GT for j:

MMyd — (Y™ |2 | X5 — X)|lo < 0, m # 5} (51)

The multimodal versions of the precision metrics (MMADE
and MMFDE) do not consider the predicted sequence clos-
est to the ground truth, but the one closest to the MMGT

MMADE(Y,MMY) = min [[Y' = MMyd[,  (52)
(i,5)EM

MMFDE(Y,M™Y) = min [[Yp —MMYig|, (53)
(i,5)EM

with M = {(i,j)[ie€[l...N],j€[l...M]}. (54)

While evaluation metrics involving the MMGT may have
been meaningful in the early stages of SHMP, these values
should be contextualized now that methods have achieved a
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Figure 9. PCA plots of latent space embeddings for AMASS GT test segments with corresponding diffused latents generated by Skeleton-
Diffusion. Each GT embedding is denoted by a * of a different color, and the generated latents corresponding to the same past are denoted
by a circle o of the same color.



0.5

0.4

0.3

Figure 10. Node correlation matrix X v for different starting choices on the H36M skeleton: the adjacency matrix A of the skeleton graph,
the weighted transitive closure R and the masked weighted transitive closure R"*?.

Precision Multimodal GT Diversity ~ Realism Body Realism
mean |, RMSE |
Base of Xy ADE| FDE/ MMADE| MMFDE] APD{ CMD| st jit  str  jit
R 0.481 0.540 0.562 0.574 9.504 11.542 316 020 451 027
RIP 0.475 0.543 0.558 0.579 8.629 12499 314 019 435 025
A (SkeletonDiffusion)  0.480 0.545 0.561 0.580 9.456 11417 3.15 020 445 0.26

Table 4. Ablation studies for the correlation matrix 3 on AMASS for adjacency matrix A, the weighted transitive closure R, and the

masked weighted transitive closure R"?.

different level of performance: by definition, the MMGT
may contain semantically inconsistent matches between
past and future, which is a highly undesirable characteris-
tic for a target distribution.

Regardless of their similarity with the ground truth data,
the generated predictions should also exhibit a wide range
of diverse motions. Diversity is measured by the Euclidean
distance between motions generated from the same obser-
vation as the Average Pairwise Distance (APD):

~ 1 ~i &
APD(Y) = S =Y (55)
(i,7)eP

with P = {(i,j)|]i€[l...N],j€[l...N], i # j}.
(56)
Diversity can also be seen in relation to the MMGT: the
Average Pairwise Distance Error (APDE) [5] measures the
absolute error between the APD of the predictions and the
APD of the MMGT

APDE(Y,MMY) = |APD(Y) — APDMMY)|.  (57)

Generated motions should not only be close to the GT
and diverse, but also realistic. Barquero et al. [5] address
realism in the attempt to identify speed irregularities be-
tween consecutive frames: the Cumulative Motion Distri-
bution (CMD) measures the difference between the average

joint velocity of the test data distribution A/ and the per-
frame average velocity of the predictions M...
F-1 71

CMD:ZZHMT_Mnl

=7 f=1

F—1 (58)
=Y (F - plIM; — M|y
=1

The Fréchet inception distance (FID) is computed for
H36M only (as in [4, 13, 62]), as obtaining the necessary
classifier to compute the features is not trivial: AMASS
does not have class labels (recently, BABEL [62] annotated
only 1% of the test data), and FreeMan’s annotations do not
map into specific classes.

D.2. Baselines

For the comparison on AMASS, H36M, and 3DPW we em-
ploy model checkpoints provided by the official code repos-
itories [5, 16, 69, 82] or subsequent adaptations [5] of older
models [19, 55, 79, 91]. HumanMac official repository does
not provide a checkpoint for AMASS, and hence it has been
discarded. For APD on H36M, MotionDiff released imple-
mentation uses a different definition which leads to signif-
icantly different results. In Tab. 9, we report the results of
their checkpoint evaluated with the same metric we used for
other methods.



Precision Multimodal GT Diversity ~ Realism Body Realism
Norm Type mean | RMSE |
M ADE| FDE| MMADE| MMFDE | APD 1 CMD | str jit str jit
Frob 0.480 0.539 0.561 0.575 9.468 12.066 326 020 454 0.26
Spect (SkeletonDiffusion)  0.480 0.545 0.561 0.580 9.456 11417 315 020 445 0.26

Table 5. Ablation on the magnitude normalization procedure for 3 on AMASS. While normalizing with the Frobenius norm and the
Spectral norm deliver very similar results, in favor of realism we opt for the spectral norm.

Precision Multimodal GT Diversity ~ Realism
Type param# ADE| FDE| MMADE| MMFDE | APD 1 CMD |
isotropic oM 0.509 0.571 0.576 0.598 7.875 16.229
SkeletonDitfusion 0.493 0.554 0.565 0.585 7.865 15.767
isotropic 34M 0.499 0.553 0.568 0.583 8.788 15.603
SkeletonDiffusion 0.480 0.545 0.561 0.580 9.456 11.417

Table 6. Effect of parameters number on AMASS for different types of Gaussian diffusion. Our nonisotropic diffusion training requires
fewer training parameters than the isotropic formulation to reach comparable performance.
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Figure 11. Our nonisotropic diffusion converges in fewer epochs

than the conventional isotropic formulation.

D.3. Datasets

For AMASS, we follow the cross-dataset evaluation proto-
col proposed by Barquero et al. [5] comprising 24 datasets
with a common configuration of 21 joints and a total of
9M frames with 11 datasets for training, 4 for validation,
and 7 for testing with 12.7k test segments having a non-
overlapping past time window. The MMGT is computed
with a threshold of 0.4 resulting in an average of 125
MMGT sequences per test segment. For 3DPW, we per-
form zero-shot on the whole dataset merging the original
splits, and by employing the same settings as AMASS we
obtain 3.2k test segments with an average of 11 MMGT

100 —
g 80 1 SkeletonDiffusion =
E BeLFusion
r 60 CoMusion
<
< DLow
g 409 TPK A
<F 20 4 DiverseSampling
© GSPS

0 T T T T T T
0 2 4 6 8 10 12 14

Limb jitter relative to GT limb length (%)

Figure 12. Diversity achieved with valid motions over total diver-
sity according to different error tolerances on AMASS. For every
method, we show the evolution of diversity (6-APD) computed
with valid motions (y-axis) for which the maximal error is below
a given threshold § (x-axis). SkeletonDiffusion presents consis-
tently the highest diversity when considering valid poses.

sequences. For H36M [34], as previous works [5, 16, 19,
19, 55, 67, 91], we train with 16 joints on subjects S1, S5,
S6, S7, S8 (S8 was originally a validation subject) and test
on subjects S9 and S11 with 5.2k segments for an average
of 64 MMGT sequences (threshold of 0.5). FreeMan is a
large-scale dataset for human pose estimation collected in-
the-wild with a multi-view camera setting, depicting a wide
range of actions (such as pass ball, write, drink, jump rope,
and others) and 40 different actors for a total of 11M frames.
As FreeMan extracts human poses from RGB, the final data
may be noisy and contain ill-posed sequences. We prune
the data to obtain fully labeled poses with a limb stretching
lower than 5cm, and by applying the same evaluation set-
tings as H36M obtain 11.0k test segments with an average
of 69 MMGT. In the next paragraph, we report the pruning
protocol. Note that as FreeMan is collected in the wild, it
provides video information that could be potentially used as
valuable context information for the human motion predic-



Precision Multimodal GT Diversity ~ Realism Body Realism
mean | RMSE |
ADE| FDE| MMADE| MMFDE | APD 1 CMD | str jit str jit
w/o-TG-Att 0.502 0.567 0.576 0.597 8.021 14934 390 020 531 0.27
iso 0.499 0.553 0.568 0.583 8.788 15.603 372 018 493 0.24
noniso 0.489 0.547 0.567 0.581 9.483 11.812 2.77 020 4.06 0.27
Ours (SkeletonDiffusion)  0.480 0.545 0.562 0.579 9.456 11418 3.15 020 445 0.26
Table 7. Ablations on the AMASS dataset [53].
Precision Multimodal GT Diversity ~ Realism Body Realism
mean | RMSE |
ADE| FDE| MMADE| MMFDE | APD 1 CMD | str jit str jit
Ours+Past 0.574 0.584 0.607 0.599 9.856 16.993 10.16 024 11.04 0.38
Ours+DCT 0.534 0.572 0.595 0.600 11.215 16.783 520 025 759 035
Ours (SkeletonDiffusion)  0.480 0.545 0.562 0.579 9.456 11.418 315 020 445 0.26

Table 8. Additional ablations on AMASS [53] for discarded components.

tion task for future works.

Pruning Noisy Data on FreeMan The authors of Free-
Man [81] compute 3D keypoints according to different pro-
tocols, and we prefer to take the most precise data when
available (smoothnet32 over smoothnet over optim deriva-
tion). The protocols exhibit a restricted number of fail-
ure cases (for example, sudden moves very close to cam-
era lenses). To avoid training and evaluating on strong fail-
ure cases, we remove all sequences where the difference in
limb length between consecutive frames in the ground truth
exceeds Scm - a good trade-off between the overall accu-
racy error range of the dataset and the precision required
for the task. In comparison, the maximal limb length er-
ror between consecutive frames in H36M (MoCap data) is
0.026 mm. Overall we obtain 1M frames, more than three
times as much as H36M. To balance the splits after pruning,
we move test subjects 1, 37, 14, 2, 12 and validation sub-
jects 24, 18, 21 to the train split. We train on 724k densely
sampled training segments (3.3k segments for validation).
H36M, instead, is composed by 305k samples.

D.4. Visualization of Generated Motions.

As mentioned in the main paper, often metrics hide or may
be influenced by artifacts. Inspecting qualitative results can
lead to better insights into the effective SHMP methods’
performance. Previous works [5, 16, 19, 55, 69, 79, 91]
visualize the diversity of the predictions by overlapping the
skeleton of multiple motions in different colors. This rep-
resentation is limited and not well suited to identify motion
irregularities. We propose to fit a SMPL mesh to each skele-
ton pose to ease inspection of the results, while preserving
the semanticity of the prediction. Ill-posed predictions can
thus be easily spotted through the erroneous SMPL fitting.
For completeness, we still report the historical visualiza-
tions in Fig. 8.

E. Further Analysis
E.1. Correlations of Latent Space

We visualize the latent space in terms of the correlation
among different latent joint dimensions. To this end, we
embed all AMASS test segments in the latent space, and
compute the first principal component along the each joint
dimension separately. For each embedding, we then plot the
principal component of two joint dimensions against each
other. In Fig. 9, we show 50 random test segments and for
each 15 diffused latents. Our latent space reflects correla-
tions connected body joints that are expected (e.g. LHip
and RHip) or are less intuitive (e.g. Neck and Hip always
show in the same space direction), while other joints do not
exhibit univocal correlations (e.g. Wrist and Ankle of the
same body side). Weak correlations (probably related to the
walking pattern) can be observed between opposite joints of
the lower and upper body such as RHip and LEIbow.

E.2. Discussion on Correlation Matrix X 5

On the Magnitude Normalization The magnitude of
3 n is constrained as in Eq. (4), where, after adding en-
tries along the diagonal, we divide by the highest eigenvalue
(spectral norm). In Tab. 5, we show results on AMASS
for another normalization choice, the Frobenius norm i.e.
the average of the eigenvalues. While both norms deliver
very similar results, we opt for the spectral norm as the re-
alism metrics indicate lower limb stretching and joint veloc-
ity closer to the GT data (CMD). An educated guess for the
subtle difference is that higher noise magnitude (Frobenius
norm) eases the generation of more diverse samples (higher
diversity) but at the same time loses details of fine-grained
joint positions (lower realism and limb stretching).



Precision

Multimodal GT

Diversity Realism Body Realism

Type Method

ADE| FDE| MAE] MMADE| MMFDE |

mean | RMSE |
APDT CMD | FID str  jit st jit

Alg  Zero-Velocity 0.597 0.884 6.753 0.683 0.909 0.000 22.812 0.606 0.00 0.00 0.00 0.00
GAN HP-GAN [6] 0.858 0.867 - 0.847 0.858 7.214 - - - - - -
DeLiGAN [30] 0.483  0.534 - 0.520 0.545 6.509 - - - - - -
TPK [79] 0.461 0.560  8.056 0.522 0.569 6.723 6.326 0.538 6.69 0.24 837 031
DLow [91] 0.425 0518  6.856 0.495 0.531 11.741 4927 1255 7.67 028 9.71 0.36
VAE GSPS [55] 0.389 0496  7.171 0.476 0.525 14757 10.758 2.103 4.83 0.19 6.17 0.24
Motron [67] 0.375 0.488 - 0.509 0.539 7.168 40.796 13.743 - - - -
DivSamp [19] 0370 0485  6.257 0.475 0.516 15310 11.692 2.083 6.16 023 7.85 0.29
Other STARS [84] 0.358 0.445 - 0.442 0.471 15.884 - - - - - -
SLD [83] 0.348  0.436 - 0.435 0.463 8.741 - - - - - -
MotionDiff [82] 0.411  0.509 - 0.508 0.536 7.254 - - 804 059 1021 0.77
DM HumanMAC [16] 0369 0480  6.167 0.509 0.545 6.301 - - 401 046 6.04 0.57
BeLFusion [5] 0372 0474  6.107 0.473 0.507 7.602 5988 0209 539 0.17 6.63 0.22
CoMusion [69] 0350 0458  5.904 0.494 0.506 7.632 3202 0.102 461 041 597 0.56
DM  SkeletonDiff 0.344 0450 5.556 0.487 0512 7249 4178 0.123 390 0.16 496 0.21

Table 9. Comparison on Human3.6M [34]. Bold and underlined results correspond to the best and second-best results, respectively.

Sophistications on the Choice of 3 For the correla-
tion matrix 3 from Eq. (4), we opt for the most straight-
forward and simple starting choice, the adjacency matrix
A. Here we report further studies to two more sophisti-
cated initial choices: the weighted transitive closure R and
the masked weighted transitive closure R, Given two
nodes v; and v; in the graph, the shortest path is denoted by
P(i, 7). The number of hops between v; and v; is denoted
by h; ;. We then can express the weighted transitive closure
R as:

R; ;= nti~! (59)

with some 1 € (0, 1), representing the reachability of each
node weighted by the hops. As the hip joint is critical in
human motion, we also consider a masked version R"?:

nip _ JRij i vnip € P(6,7),vi # Vnip, vj # Vnip
w0 otherwise
(60)

These three node correlation matrices are visualized on the
H36M dataset in Fig. 10. While all three alternatives ob-
tain good results on AMASS in Tab. 4, we opt for the adja-
cency matrix A as it is not handcrafted and allows our non-
isotropic approach to generalize in a straightforward man-
ner to different datasets. We see the analysis of sophisti-
cated choices for Xy as an exciting future direction.

E.3. On the Convergence of Nonisotropic Diffusion

As depicted in Fig. 11, our nonisotropic formulation con-
verges faster than the isotropic counterparty. As the time
required for a train iteration is equal among both formu-
lations up to a few negligible matrix multiplications, our
nonisotropic formulation achieves higher performance in

fewer iterations. In Tab. 6, we show that for similar per-
formance (precision ADE) our nonisotropic formulation re-
quires fewer parameters than conventional isotropic diffu-
sion. We report these findings as they may be relevant for
HMP applications or other structured tasks employing dif-
fusion models.

E.4. Ablations of SkeletonDiffusion

In Tab. 7, we report the ablations discussed in Sec. 5.2. We
compare the effect of TG-Attention layers on isotropic dif-
fusion (3 = I and ¢ = 0) and analyze nonisotropic dif-
fusion with our covariance reflecting joint connections 3y
(Eq. (4)) in the variant where ¢ = 1 (as in Eq. (3)) and
our blending with the scheduler v; (Eq. (5)). Further ex-
periments, such as fine-tuning the encoder responsible for
embedding the past observation or representing motion data
via the Discrete Cosine Transform (DCT) [16] are reported
in Tab. 8. From the low precision results of the latter exper-
iment and referring to Tab. 1, we speculate that while DCT
seems suitable for transformer-based diffusion models op-
erating in input space [16, 69], extracting features directly
from Euclidean motion space seems a better choice for la-
tent diffusion models (BeLFusion [5] and our method).

F. Additional Experiments
F.1. Diversity and Body Realism

In the main paper we discuss our intuition on how arti-
facts in the generated motions may lead to increased dis-
tance between the predictions and so to a better diversity
metric (APD). We wish to provide evidence of this phe-
nomenon with an argument similar to the one employed in



Precision Multimodal GT Diversity ~ Realism Body Realism
mean | RMSE |
Type  Method ADE| FDE/ MAE| MMADE| MMFDE| APD{ CMDJ sttt sttt
Alg  ZeroVelocity 0764  1.016  10.921 0.785 1.019 0000  40.695 452 000 452 0.0
VAR DLow 0596  0.652  9.188 0615 0.654 13776 12,754 8.79 043 1173 063
DivSamp 0583  0.690  10.758 0.617 0698 23878 46594 1238 082 1811 1.07
BeLFusion 0.507 059 9914 0.543 0.606 7750 16812 9.07 023 1065 031
DM  CoMusion 0550  0.600  8.773 0.588 0.611 14400 12282 621 066  8.60 0.87
Ours 0517 0587  7.106 0.567 0.603 10.547 8.188 456 022 595 0.30

Table 10. Models trained on AMASS tested on zero-shot on 3DPW with synthetic noise up to 2cm added to 25% of the input.

Precision Body Realism
mean RMSE |
ADE| FDE| MAE] str jit str jit
DLow 0.716 0.776 12397 736 0.23 9.57 040
DivSamp 0.728 0.879 12373 501 0.23 749  0.32
BeLFusion 0.657 0.756 11.175 8.89 0.18 1069 0.27
CoMusion 0.670 0.792 10.215 456 0.33 6.28  0.46
SkeletonDiffusion 0.660 0.779 9.045 3.67 0.14 494 0.24

Table 11. Long term prediction (5s) on AMASS via autoregression of models traimed to predict 2s. MMGT is undefined in this case.

Memory|  NumParams) Time]
DLow 31 MB 8.1 M 111 ms
DivSamp 88 MB 23.1M 8 ms
BeLFusion 53 MB 17.8 M 10341 ms
HumanMAC 114 MB 28.7M 7438 ms
Comusion 87 MB 19M 153 ms
SkeletonDiffusion 106 MB 26.5M 412 ms

Table 12. Model footprint for a single H36M inference (RTX
6000)

Fig. 7 of the main paper i.e. by inspecting the evolution
of the APD metric at different tolerance thresholds of limb
jitter. First, we compute the valid motions among the gen-
erated predictions per method on the AMASS dataset, dis-
carding a sequence if it displays a bone length jitter above
a given threshold §. By calculating the average pairwise
distance APD only between valid motions and relating this
value to the customary APD, in Fig. 12 we can see the con-
tribution of ill-posed motions on diversity. Such evolving
diversity differs significantly from the values reported in
Tab. 1. Our method generates by a large margin the most di-
verse motions when considering realism according to limb
jitter, demonstrating excellence also under strict constraints.
Non-smooth curve regions display the influence of ill-posed
motions on diversity when considering a small ensemble of
predictions, as for CoMusion and TPK. When the number
of valid motions is small and some of them present stretch-
ing, removing the unrealistic motions may considerably im-
prove or worsen the average pairwise distance, resulting in
sudden jumps in the curves. We are thus the first to demon-
strate quantitatively that unrealistic motions increase diver-

sity.
F.2. Human3.6M

In Tab. 9, we report quantitative results on H36M. The
H36M dataset is particularly small and contains only 7 sub-
jects. We consider this dataset less informative about gen-
eralization capabilities of the methods, and more vulner-
able to overfitting. With analogous considerations as on
AMASS, SkeletonDiffusion achieves state-of-the-art per-
formance. Thanks to the explicit bias on the human skele-
ton, SkeletonDiffusion consistently achieves the best body
realism, in particular in regard to limb stretching. Even in a
setting with limited data, the prior on the skeleton structure
contributes to achieving consistent realism.

Overall, the body realism metrics for DM methods ap-
pear improved compared to AMASS (Tab. 1). Along VAE
and DM approaches, another line of work relies on rep-
resentation learning and vocabulary techniques [83, 84].
While these methods achieve good performance, they em-
ploy carefully handcrafted loss functions, limiting the an-
gles and bones between body joints or leveraging the mul-
timodal ground truth in loss computations. Inconveniently,
they are required to scrape the whole training data to com-
pute the reference values or the multimodal ground truth,
with computational expenses that scale quadratically with
the number of instances in the dataset and require consider-
able engineering effort to be adapted to big data.

F.3. Challenging Scenario: Synthetic Noise in Zero-
Shot Generalization

We perform further experiments on the out-of-distribution,
in-the-wild data of 3D Poses in the wild (3DPW), evaluated



in Tab. 3, by designing a challenging scenario with synthetic
noise (Tab. 10). We add random noise of a maximal magni-
tude of 2cm to 25% of the input observation keypoint, thus
testing robustness to noise for models that were trained with
precise, MoCap data (AMASS). While the experiments in
Tab. 2 show models trained on noisy data (FreeMan), here
we test robustness to noise in a zero-shot setting. Skeleton-
Diffusiondelivers among the highest precision and diversity,
and the most realistic motions with a gap between 26% and
65% compared to the otherwise closest competitor, CoMu-
sion (see Tab. 1). While BeLFusion shows jitter values close
to ours, the limb stretching and the CMD are almost double
as high, meaning that the length of their limbs highly varies
over the whole prediction timespan, and the joint velocities
are unrealistic: they achieve high precision with extremely
unrealistic motions.

F.4. Long Term Prediction

We test models trained on AMASS to predict the next 2s in
the generation of 5s motions via autoregression (Tab. 11).
Here we focus on Precision and Realism, as the multimodal
GT is ill-defined in this setting, and diversity evaluation
loses meaning and its measuremnt is polluted by the dif-
ficulty of the task. We achieve again the highest realism
and SoTA precision demonstrating the effectivness of our
explicit bias on the human skeleton.

F.5. Computational Efficiency

Measurement are reported in Tab. 12. While there is no
obvious computational difference between diffusion mod-
els in latent (BeLFusion, Ours) and input space (Human-
MAC, CoMusion), latent models achieve much better body
realism, particularly jitter (Tab. 1), by not working with 3D
coordinates directly.

G. More Qualitative Examples

We show more qualitative results on AMASS in Figs. 13,
14, 15, 16 and 17. More qualitative examples for H36M
can be found in Figs. 18, 19 and 20 and Fig. 8.
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Figure 18. Qualitative Results on H36M. Action labeled WalkDog, segment n. 3122.
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Figure 20. Qualitative Results on H36M. Action labeled WalkTogether, segment n. 791.




