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Supplementary

In this supplementary material we discuss:

e the training protocol;

e further insights on the functioning of the Conditional
Memory Encoder (CME), our learnable correction mech-
anism to adjust SAM?2 tracking focus;

 additional ablations: on our Cross-Modal Temporal
(CMT) Adapter, on inference window size, comparison
with smaller backbones, and experiments on Referring
Image Segmentation;

e comparison with SAM2-based baselines;

* qualitative examples from MeViS to assess the effective-
ness of SAMWISE on challenging scenarios.

1. Training protocol

Following [9], we train our model with a combination of
DICE loss and binary mask focal loss. We train our Condi-
tional Memory Encoder (CME) via self-supervision. For
each video clip, given the prompt p we compute the pre-
dicted masks using SAM?2 Mask Decoder:

Ym[t] = DdGC(fmemap) > O,t =1.1T. (1)

The predicted masks Y, [t] represent the standard output of
SAM2 Mask Decoder, i.e. the masks computed given the
memory features Fi,.,,. As we aim at detecting when the
memory-less features highlight different object w.r.t. the one
currently tracked, we further compute the unbiased output
mask. By employing the unbiased memory-less features,
which do not take into account the previous tracking context
encoded in the Memory Bank, the prediction is based solely
on the object currently more aligned to the caption in the
given clip. Formally:

yl[t] = Ddec (]:7 p) > O7t =1.T (2)

Given each pair of the binary masks at frame ¢, we define
the detection label as:
{1 if V[N Ynlt] =0

Y = 0

otherwise
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The label is 1 if the intersection of the two masks is null,
i.e. the masks segment different objects. We supervise our
CME with a standard Cross-Entropy loss:

T
1

‘CCME = 5 [ytloy(pdetect) + (1 - yt)lo.g(l - pdetect)]a
T

t=1
“4)
where pgetect 1s computed as in eq. 9 of the main paper.

2. CME: Qualitative impact

In this section, we analyze the impact of the Conditional
Memory Encoder (CME) within SAMWISE. In Fig. 1 and
Fig. 2, the model is tasked to segment the correct object in
the video based on the provided referring expression. We
use yellow masks to represent the output predictions gen-
erated by SAMWISE. Generally, the model tracks the ob-
ject that appears most relevant according to the information
available up to that point. However, due to the phenomenon
of tracking bias, i.e. the tendency to continue tracking an
initially detected object, the correct object might not be se-
lected when it appears. Our CME addresses this challenge
by detecting when an object aligned with the text prompt
becomes visible. Upon detection, the CME computes the
corresponding mask and encodes it into the Memory Bank.
To highlight the CME role, we show the candidate masks
it proposes in green or red, reflecting whether the proposed
mask denotes a correct or incorrect detected object. For
clarity, these masks are not predicted as final output but are
temporary representations stored in the Memory Bank. By
encoding these candidate masks, the CME enables SAM-
WISE to adjust its tracking dynamically, balancing the in-
fluence of previously tracked objects with newly detected
ones.

Correct Object Detection by CME. In Fig. 1, we show-
case examples in which the CME successfully identifies
the correct object. These examples highlight various chal-
lenging scenarios. In some cases, all potential objects are
present in the scene from the beginning, but the discrimina-
tive action that distinguishes between them only occurs later



a. Cat climbing on cat tree.
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b. The airplane advancing in our direction.
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C. The elephant leaning forward and touching its trunk to the back of the other elephant.

d. White fish swiming and moving a bit
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€. The vehicle at the front making a left turn at the intersection.

Figure 1. Correct CME detections. The plot shows examples where our CME correctly identifies (green masks) the referred object when
the action starts unfolding. SAMWISE recognizes that the newly proposed object is more aligned with the query and thus switches its
tracking focus in the subsequent frames.

a. The first car in the process of traveling in a straight line.

b. Sit on the ground and eat then lay down and turn over.
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Figure 2. Incorrect CME detections.The plot shows examples where our CME provides wrong object proposals (red masks) due to lack
of contextual information. In these examples, SAMWISE determines that, when tacking into account past video context, the previously
object is more aligned with the query and therefore does not switches its tracking focus.

in the video. For example, in case (a), the target cat starts of the other elephant at a later moment. In other scenarios,
climbing only at a specific point in the sequence, and simi- the action itself remains ambiguous until a key point. For
larly, in case (c), the elephant touches its trunk to the back instance, in example (e), the action of turning left only be-



Cat climbing on cat tree.
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Figure 3. Effect of Tracking bias. The figure shows how memory features (PCA) reinforce the initial choice, leading to tracking bias and
preventing focus to more semantically aligned objects. In the first row, the model fails to shift attention when the correct object begins the
relevant action; in the second, it misses the correct object when it appears later in the scene.

comes identifiable after a certain frame, at which point the
CME detects the correct car and informs SAMWISE, al-
lowing it to shift focus to the correct instance. Similarly, in
(d), the model faces a challenging scenario, where several
instances are visible in the video and the action of moving
a bit remains ambiguous during the first frames. In other
situations, like case (b), the target object is not visible at the
start. Here, SAMWISE starts tracking a different object (an
incorrect airplane) until the target appears in the scene.

Handling Incorrect Candidate Detection. In Fig. 2, we
demonstrate the robustness of SAMWISE against incorrect
candidate proposals generated by the CME. While our CME
generates masks that align with the text prompt at clip-level,
these proposals may not align correctly at a global level.
This occurs because the CME reasons locally within the
scope of the current clip, potentially leading to plausible but
ultimately incorrect proposals. Interestingly, SAMWISE is
able to reason about past predictions and determine which
object better aligns with the referring query, by relying on
the broader context encoded in the Memory Bank. There-
fore, the model is able to assess whether the candidate ob-
ject is more aligned to the tracked object. We show this
through a number of representative examples. For instance,
in case (a), the CME proposes a novel plausible car (red
mask). However, the previously tracked object was already
traveling in a straight line, and SAMWISE, by balancing
this contextual information with the new proposal, is able
to correctly determine that the correct object is the one al-
ready subject to tracking. Similarly, in case (d), the CME
proposes a different cow, but SAMWISE correctly inter-
prets that waving head describes more the foreground cow
rather than the new one. In case (b), the referring expres-
sion is more ambiguous and lacks a specific subject, leading
the CME to propose the human as the target object rather
than the panda. However, SAMWISE correctly identifies
the panda as the object that aligns best with the query, as
it is both sitting on the ground and eating. In example (e),
the CME proposes the wrong elephant, but SAMWISE, by
reasoning over the frames, understands that the candidate
object does not match the query, which describes an ele-
phant turning around to walk away. Finally, in case (c), the

Adapter layers
Layer1 Layer2 Layer3 Params ‘ TJ&F
03M | 452
v 22M | 503
v v 35M | 521
v v v 42M | 542

Hidden dimensionality
64 128 256 384

J&F 48.0 52.1 54.2 52.5
Params 1.0M 2.1 M 42M 88M

Table 1. Top: Ablation on the Number of Adapters. Layer i in-
dicates the intermediate layer of the Hiera backbone to which we
add our CMT modules. Bottom: Effect of hidden dimensional-
ity used inside our Cross-Modal Temporal Adapter. All numbers
are reported without using our CME module, and CLIP-B as text
encoder.

described action has occurred in the past. The CME pro-
poses a candidate tiger; however, SAMWISE, by remem-
bering which object actually transitioned from the right to
the left, refrains from switching its focus.

3. Tracking Bias

We provide additional qualitative examples to further ex-
emplify the effect of tracking bias, as visualized in Fig. 3,
where we plot the memory features. Tracking bias occurs
when the model mistakenly focuses on an incorrect object,
failing to transition its attention to another, more relevant
object once it emerges. This issue is particularly evident in
scenarios where the target object becomes distinguishable
only after performing a specific action. As shown in the
examples, the model initial focus on an object causes it to
overlook the presence of another, more semantically aligned
instance, even when the latter matches the caption. This be-
havior stems from biased memory features, which reinforce
the initial selection instead of adapting to new cues.

4. Additional Ablations

Number of CMT adapters. In Tab. 1-top we assess how
the number of adapters influences performance. Without



Method MeViS Ref-YT-VOS Ref-DAVIS Method Visual Total MeViS YT-VOS DAVIS
eHe T&F T&F T&F Encoder Params J&F J&F J&F
G.DINO+SAM2 Ist frame 37.7 57.5 66.4 TCE-RVOS [4] jwacv24) ResNet-50 - - 59.6 594
G.DINO+SAM?2 All frames 36.8 56.9 61.2 ReferFormer [9] (cvpr'22] ResNet-50 176 M - 58.7 -
SAMWISE (ours) 48.3 67.2 68.5 OnlineRefer [8] (iccv23) ResNet-50 176 M - 59.3 57.3

Table 2. Comparison of SAMWISE against baselines that em-
ploy an off-the-shelf grounded detector (GroundingDino) to pro-
vide box prompts.

Window‘ 4 6 8 12
J&F | 518 539 542 543

Table 3. Effect of Window Size. Ablation on the effect of win-
dow size (i.e. number of frames processed together in each clip) in
our online framework. Numbers combuted on MeViS valid-u set,
using CLIP-B as text encoder, without CME module.

any adapter (i.e. relying only on a learnable MLP to project
text prompts), the model achieves a modest 7 & F of 45.2%.
Adding a single adapter at the final layer, i.e. on F3, pro-
vides a significant boost of 5.1%. Adding a second adapter,
on F?2, further improves performance by +1.8%. Our cho-
sen configuration, with three adapters across the last three
layers of feature extractors, achieves the highest perfor-
mance with a J&F of 54.2%, indicating that multi-layer
integration enhances feature refinement, thereby improving
segmentation accuracy.

Adapter hidden dimensionality. In Tab. I-bottom, we
evaluate the performance of our CMT adapter with varying
hidden dimensionalities. Our configuration, with a chan-
nel dimension of 256, achieves strong performance (54.2
J&F) while maintaining a lightweight model with only
4.2M trainable parameters. Reducing the channel dimen-
sion to 64 or 128 results in a significant drop in perfor-
mance, with a reduction in J&JF of 6.2 and 2.1, respec-
tively. Increasing the hidden dimensionality to 384 leads to
a marginal performance drop of -1.7 J &, while doubling
the number of trainable parameters (8.8 M).

Window size. In Tab. 3 we evaluate how the number of
frames in each processed clip affects performances. Perfor-
mances increase with the number of frames, as a larger win-
dow allows to better model temporal evolution. Since in-
creasing the window size from 8 to 12 only yields marginal
gains, we chose to keep 8 as clip length to better suit an
online framework.

Comparison with smaller backbones. In Tab. 4 we com-
pare against previous methods using a smaller backbone,
namely a ResNet-50. In this setting we obtain comparable
model sizes and higher perfoemance gap.

Referring Image Segmentation. Among our contribu-
tions, the design of the HSA and the CME module are
tailored to address challenges of referring segmentation

MUTR [10] (aAATr24]
SAMWISE (w/ CLIP-B)
SAMWISE

ResNet-50 190 M - 61.9 65.3
Hiera-B  150M 483  67.2 68.5
Hiera-B  202M 49.5 69.2 70.6

Table 4. Comparison of SAMWISE against state-of-the-art RVOS
methods on MeViS, Ref-Youtube-VOS and Ref-DAVIS datasets
using smaller backbones. Bold and underline indicate the two top
results.

Method Text Referring Image Segmentation
Encoder RefCOCO RefCOCO+ RefCOCOg

Large VLM based

VISA [cvPr24) ChatUnivi 72.4 59.8 65.5

RIS Specialist

MagNet [2] (cvpr24)  BERT 75.2 66.2 65.4

Ours RoBERTa 76.8 67.1 67.3

Table 5. Comparison with SOTA for RIS. Results on the val set of
the RefCOCO series dataset in terms of mloU.

in videos. However, the fundamental value of our CMT
adapter is that it enables prompting SAM?2 with referring
expressions, which can be thus easily applied for image-
level tasks. In Tab. 5 we evaluate SAMWISE on Referring
Image Segmentation benchmarks, comparing against state-
of-the-art specialist models, and Large-VLM based. Re-
markably, we find that our SAMWISE achieves competitive
results also in image-level tasks, showcasing its versatility.

Training time. Training our pipeline requires roughly 150
GB of GPU memory. In our setup, this translates in training
on 2 A100 for 18 hours for finetuning on MeViS. Full fine-
tuning of SAM?2, i.e. without our adapters, requires roughly
3 times more GPU memory. For the experiment on full-
finetuning (Tab. 4 of main paper), we used 8 A100 for 26
hours.

5. SAMWISE vs naive baselines with SAM2

In Tab. 2, we compare SAMWISE with two baselines uti-

lizing SAM2:

* GroundingDINO + SAM2 Ist frame: This approach
employs GroundingDINO [6] to identify the referred ob-
ject in the first frame based on the textual query. The
resulting bounding box is then used to prompt SAM2 [7],
which tracks the object across the video.

* GroundingDINO + SAM2 All frames: In this baseline,
GroundingDINO [6] detects the referred object in each
frame using the textual query. The bounding box is then
used to prompt SAM?2 [7] independently on each frame.

Results indicate that SAMWISE consistently outperforms

both baselines. Specifically, it surpasses them by approxi-

mately 10% in J &F on both MeViS [3] and Ref-Youtube-



a. The initial vehicle driving straight ahead.
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b. With three bear cubs in tow, the large bear is traversing the road.
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d. The little cat walking from behind to the
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€. Man moving to right and watching the horse running in circles

Figure 4. Qualitative examples from MeViS. The figure highlights SAMWISE ability to handle challenging RVOS scenarios, including
occlusions, multiple instances, and distinguishing between similar objects based on actions and descriptive attributes.

VOS [1], and by 2% and 7% on Ref-DAVIS [5], respec-
tively. GroundingDINO + SAM Ist Frame baseline heavily
relies on the accuracy of the initial bounding box proposal
since the object is identified solely in the first frame and then
tracked. This dependency leads to suboptimal results, espe-
cially when the target object cannot be clearly identified in
the first frame, either because the object appears later or
the relevant action unfolds as the video progresses. How-
ever, this baseline performs relatively well on Ref-DAVIS
[5], which contains more static, object-centric videos. The
second row shows the results for GroundingDINO + SAM
All Frames. Although this method allows for frame-by-
frame object detection, it does not leverage SAM?2 tracking
capabilities, leading to poor masks quality. Additionally,
limiting reasoning to individual frames causes the model
to overlook temporal consistency, often resulting in shifts
between objects across frames. In contrast, SAMWISE ex-
plicitly models temporal evolution within its features and
integrates textual cues without relying on external bounding
box proposals. This design enables consistent localization,
segmentation, and tracking of the target object.

6. Qualitative results

In Fig. 4, we present qualitative examples from the MeViS
dataset that highlight the effectiveness of SAMWISE. These
examples cover a range of challenges typical in RVOS.
SAMWISE shows strong robustness in dealing with occlu-
sions (case e.), accurately tracking target objects even when

they are partially or fully obscured. It also handles situa-
tions with multiple instances (case c.), correctly segmenting
all relevant objects. Additionally, SAMWISE excels at dis-
ambiguating between similar objects by reasoning over both
actions (cases a. and b.) and descriptive attributes (case b.),
ensuring precise identification of the correct targets based
on their behavior and characteristics in the scene.
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