
Finsler Multi-Dimensional Scaling:
Manifold Learning for Asymmetric Dimensionality Reduction and Embedding

Supplementary Material

This supplemental material is organized as follows:
• Appendix A contains the proofs of Theorems 1 and 2

and Propositions 1 and 2 and the details of the derivations
for the Finsler stress function (Eq. (7)).

• Appendices B and C contain additional theoretical dis-
cussions. The former is dedicated to the link between cur-
rent fields and Randers metrics, while the latter focuses
on a generalisation of the Wormhole criterion to Finsler
MDS to handle manifolds with missing parts.

• Appendix D contains implementation details and addi-
tional experiments complementing the visualisation ex-
periments in Sec. 7.1 and the digraph representation
learning experiments in Sec. 7.2.

A. Proofs and Derivations
A.1. Proof of Theorem 1
We here provide two proofs of this result. The first uses the
Euler-Lagrange equation, a powerful and general tool in the
calculus of variations. It can give some insights for gener-
alisation to other metrics. However, given the simplicity of
the canonical Randers space, a quick and direct proof is also
given.

Euler-Lagrange. In calculus of variations, the Euler-
Lagrange equation provides first order optimality necessary
conditions on the solution of functionals involving func-
tions x(t) and their derivative x0(t).

Theorem 3 (Euler-Lagrange equation). If a functional
of a smooth scalar function x(t) is given by L(x) =R 1
0 L(t, x(t), x0(t))dt, where L is a positive smooth func-

tion, then the solution minimising the functional L satisfies
the equation
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Many generalisations of the Euler-Lagrange equations
exist. In our case, when x(t) = (x1(t), · · · , xm(t))> 2 Rm

is multi-dimensional, the Euler-Lagrange equation is dupli-
cated for each output dimension. In other words, the mini-
mum solution satisfies the set of equations
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The Euler-Lagrange equations can be used to derive
shortest geodesic paths in our canonical Randers space. The
length is a functional (Eq. (1)), that can be rewritten from a

Lagrangian perspective as
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Denoting � = (�1, · · · , �m) and �0 = (�0
1, · · · , �0

m), the
Euler-Lagrange equations for this functional are given for
all i 2 {1, · · · ,m} by
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Since L does not explicitly depend on �, but only its
derivative, we have that the Euler-Lagrange equations sim-
plify to
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In the canonical space, ! is a uniform vector field, as
such its coordinates !i do not depend on t. Thus, d

dt!i = 0.
We then have, stacking the Euler-Lagrange equations into
vector form, that
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Equation (17) is the same as the one we would obtain if
! ⌘ 0, i.e. if the metric was Riemannian. It is well-known
to describe the equation of a straight line. To see this, if we
take t = s to be the Euclidean arclength parametrisation,
then k�0(s)k2 = 1 and then the Euler-Lagrange equation
becomes d

ds�
0(s) = 0, meaning that �0(s) is constant and

thus �(s) is a straight Euclidean line. Shortest paths in the
canonical Randers space are thus the straight segments as in
the Euclidean space, making it a flat space.

Calculation. To better understand the particular structure
of the canonical Randers space, we provide an alternative
simple proof. Assume without loss of generality that ! =
↵(0, · · · , 0, 1)>, and denote �(t) = (x1(t), · · · , xm(t))>.



Then
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The right term is a constant not depending on the curve �,
whereas the left term is the usual functional giving the Eu-
clidean length of the curve �. Thus, the shortest path in
the canonical Randers space is also the shortest path in the
Euclidean space, which is given by the Euclidean segment
�(t) = (1� t)x+ ty.

A.2. Proof of Proposition 1

Although the shortest paths are the same in the canonical
Randers space and in the Euclidean space, i.e. �FC

x!y(t) =
(1� t)x+ ty, their lengths are not the same as they depend
on the direction of traversal. Since the metric is canonical,
it does not depend on the position �FC
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A.3. Proof of Theorem 2
By assumption, the data can be accurately embedded in
the Euclidean space Rm. Denote X 2 Rm this solution,
with d(xi, xj) = Di,j for all pairs (i, j). Consider now
the Finsler MDS problem into the canonical Randers space
of dimension Rm+1. Without loss of generality, we can
assume that ! is along the last coordinate axis. The em-
bedding Y = [X, 0] 2 RN⇥(m+1), which is the concate-
nation of the m-dimensional Euclidean embedding with a
last 0 coordinate is the minimal solution. Indeed, since
the embedding lies in a hyperplane orthogonal to !, we
have dF (xi, xj) = dE(xi, xj) for all pairs (i, j). Since the
Euclidean embedding is accurate, we have dFC (xi, xj) =

Di,j for all pairs (i, j).

A.4. Derivation of Eq. (7)

Plugging into the Finsler stress (Eq. (4)) the canonical Ran-
ders distances between embedded points (Eq. (6)), we have
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As wij = wji, the second summation term vanishes
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The terms
P

i,j wijkxj � xik22 and
P

i,j wijDijkxj �
xik2 are the ones we would obtain in the traditional SMA-
COF algorithm [44], and can be written, respectively,
tr(X>VX) and tr(X>B(X)X), with V and B given by
Eq. (8) and Eq. (9).

The terms
P

i,j wij(xj � xi)!!>(xj � xi)> andP
i,j wijDij!>(xj �xi)> are specific to the Randers met-

ric, and can be simply written as tr(X>VX!!>) and
tr((W> �D> �W �D) m!>X>).

A.5. Proof of Proposition 2

Our proof is based on the majorisation approach [32, 44].
Inspired by the traditional SMACOF algorithm, we aim to
find a function g(·, ·) that satisfies all the following condi-
tions for any points X and Y :

(i) �2(X) = g(X,X),
(ii) �2(X)  g(X,Y ) for any Y ,

(iii) g(X,Y ) can be easily minimised with respect to X
for any Y .

For such a function g, the algorithm
X(k+1) = argmin

X
g(X,X(k)) (22)



decreases the stress at each iteration as
g(X(k),X(k)) � g(X(k+1),X(k)) � g(X(k+1),X(k+1)).

(23)
Since the stress �2(X(k)) = g(X(k),X(k)) decreases at
each iteration, the algorithm converges to a local minimum
(sandwich theorem).

We now look for a suitable function g. From the deriva-
tion of the stress function in Eq. (21), we have

�2(X) = tr(X>VX) + tr(X>VX!!>)

+ 2 tr(CX>)� 2 tr(X>B(X)X), (24)
As in the traditional SMACOF [10], the Cauchy-Schwarz
inequality implies that
tr(X>B(X)X) � tr(X>B(Y )Y ) = µ(X,Y ). (25)

We thus have
�2(X)  g(X,Y ), (26)

where
g(X,Y ) = tr(X>VX) + tr(X>VX!!>)

+ 2 tr(CX>)� 2µ(X,Y ). (27)
To implement the majorisation update rule (Eq. (22)), we

need to compute the gradient of g(·,X(k)) (Eq. (27)). We
have
rXg(X(k+1),X(k)) = 2VX(k+1) + 2VX(k+1)!!>

+ 2C � 2B(X(k))X(k).
(28)

Since X(k+1) minimises g (Eq. (22)), the first-order opti-
mality conditions lead to
2VX(k+1) + 2VX(k+1)!!> + 2C = 2B(X(k))X(k).

(29)
The terms in X(k+1) are linear, we can thus pseudo-

invert this system of equations to get the update rule. Recall
how to rewrite a linear system of equations to only have the
unknowns to the right of the coefficient matrix.

Lemma 1. For any matrices A, X , and C, we have
AXB = C () (B> ⌦A) vec(X) = vec(C).

Applying this rewrite to the linear system of equations
Eq. (29), we get the desired update rule

vec(X(k+1)) = K† vec(B(X(k))X(k) � C), (30)
where K = (Im + !!>)⌦ V is a Kronecker matrix.

B. The Relationship between Current Fields
and Randers Metrics

The search of shortest-time trajectories in a medium with
time-independent wind is an old problem first studied by
Ernst Zermelo [111] and is called the Zermelo navigation
problem. In fact, it has turned out to be such an important
question that it can be used to explain causality in space-
time [17]. In the presence of wind v(x), unit balls of the

Finsler metric Fx are offset by v(x). To remain in a Finsler
space, where 0 is inside unit balls, the wind must have a
small magnitude Fx(�v(x)) < 1. Note that in the pres-
ence of large winds, the wind implies irreversible displace-
ments, explaining the irreversibility of time and causality in
the world. However, the obtained metric in large winds is
no longer a Finsler metric.

Consider the traditional case of a Riemannian manifold
X . For notational simplicity, we will drop the explicit
dependence on x. The Riemannian metric is written as
R(u) = kukM . Consider a wind with small magnitude
kvkM�1 < 1. The Zermelo metric F , which provides the
Finsler metric measuring the traversal time of agents along
curves on X with wind v is given by the equation [92]
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Solving this equation with respect to F (u) yields the Zer-
melo metric given by

F (u) = kukMv + !>
v u, (32)

where
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!v = � 1
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The Zermelo metric is thus a Randers Finsler metric. In
particular, note that for the traditional isotropic Riemannian
metric with M = I , and a small current kvk22 ⌧ 1, then
Mv ⇡ M and the Randers drift component becomes !v ⇡
�v. As we work on synthetic current data with M = I , we
make the simplifying approximation when computing the
Zermelo-Randers metric that it is given by F (u) = kuk2 �
v>u. Thus our Randers linear drift component is given by
the opposite of the current field.

C. Wormhole Finsler MDS
Our Finsler MDS formulation allows to use non-uniform
weights wi,j in the Finsler stress function, similar to regu-
lar MDS approaches. Here, we focus on generalising the
recent state-of-the-art method WHCIE [12] for computing
theoretically guaranteed consistent pairs of points on man-
ifolds sampled with missing parts. It was originally mo-
tivated for improving unsupervised shape matching to han-
dle partial shapes by filtering out inconsistent pairs from the
Gromov-Wassertein loss [11]. We first present the existing
approaches in Riemannian manifolds and then focus on our
generalisation to Finsler manifolds.

Riemannian wormhole criterion. Let X̃ be a Riemannian
data manifold (without missing parts) and Ỹ ⇢ X̃ be a ver-
sion of the data manifold that is missing some parts Ỹ 6= X̃ .
Let X̃ be sampled data on Ỹ (and thus also on X̃ ). Data dis-



similarities are computed as shortest path distances. How-
ever, depending on whether we are given the full manifold
X̃ or the partial one Ỹ , the computed data dissimilarities
DX̃ and DỸ , computed respectively on X̃ and Ỹ , might
differ. This is due to the fact that geodesic trajectories in
the full manifold X̃ might pass through missing parts of Ỹ
making shortest paths on Ỹ longer for some pairs of points.
As the data dissimilarities differ, optimising the stress func-
tion with each of them and using the same uniform weight
scheme wi,j = 1 for all pairs will lead to different embed-
dings X 6= Y . The objective here is to design a different
strategy on the weights wi,j such that the resulting embed-
dings are as close as possible X ⇡ Y , meaning that the
scheme is robust to missing parts.

Pairs of points xi and xj are said to be consistent if
their shortest path distances (DX̃ )i,j = (DỸ)i,j are con-
sistent on the full X̃ and partial Ỹ shapes. In practice, a
majority of pairs is consistent [12], but a significant amount
of pairs are inconsistent, leading to incorrect geodesic dis-
similarity estimates in the partial case affecting the embed-
ding. To mitigate this effect, a natural approach is to fil-
ter out inconsistent pairs my masking out their contribution
to the stress function. This translates to choosing a weight
scheme wi,j 2 {0, 1}, with wi,j = 1 only for consistent
pairs. One way of proceeding is to use heuristics for short
distance computations and focus only on local pairs [87].
More recently, another paradigm has shown impressive re-
sults [12, 79]. Rather than focusing on local pairs, the idea
is to design a criterion that can guarantee whether a pair is
consistent. Guaranteeing means that there is theoretically
no false alarm possible by the criterion: only consistent
pairs are found. More general criteria find more consistent
pairs, allowing the method to use more non-perturbed infor-
mation to find the embedding.

A common misconception is to believe that shortest
paths not intersecting the boundary B̃ = �Ỹ provide con-
sistent pairs, as was debunked in [12]. Rather than focusing
on the intersection with the boundary of the partial mani-
fold, the distances to the boundary were used to define the
criteria. Let x̃iB̃

and x̃jB̃
be the closest boundary points to

x̃i and x̃j on the partial shape Ỹ ,
x̃iB̃

= argmin
x̃b2B̃

(DỸ)i,b and x̃jB̃
= argmin

x̃b2B̃
(DỸ)j,b.

(35)
In [14, 79], a first criterion CT : Ỹ ⇥ Ỹ ! {0, 1} was
proposed

CT (x̃i, x̃j) = (DỸ)i,j(DỸ)i,iB̃
+(DỸ)j,jB̃

, (36)

where is the indicator function. The idea behind this cri-
terion is that if geodesic paths on the full manifold X̃ be-
tween points x̃i and x̃j should pass through missing parts in
Ỹ , then their length is at least the sum of the distances to the
boundary B̃. However, this intrinsic criterion is particularly

conservative as it discards the length of this trajectory be-
tween boundary points, since information on the manifold
is lost inside missing parts. Recently, [12] lifted extrinsic
information to provide a worst case bound on the length of
paths between boundary points. If the Riemannian metric
on the manifold is the standard one given by the identity
matrix, then trajectories between boundary points on the
manifold are at least longer than the length of the straight
segment in the original Euclidean embedding space Rn

(DX̃ )b1,b2 � dE(x̃b1 , x̃b2) (37)
for any boundary points x̃b1 and x̃b2 . From this simple ob-
servation, [12] generalised the CT criterion to the wormhole
criterion CW : Ỹ ⇥ Ỹ ! {0, 1} defined as

CW(x̃i, x̃j) = (DỸ)i,jKE
i,j
, (38)

where the threshold matrix KE
i,j is computed as

KE
i,j = min

x̃b1 ,x̃b22B
(DỸ)i,b1 + (DỸ)j,b2 + dE(x̃b1 , x̃b2).

(39)
For more general Riemannian metrics on the manifold, [12]
showed how to generalise the wormhole criterion. The
idea is to provide a worst case bound on the distance of
each infinitesimally small Euclidean arclength step along
the straight Euclidean segment between boundary points.
Denote �M̃ > 0 to be the minimum eigenvalue of the Rie-
mannian metric M̃ over the full manifold X̃ , and can be
assumed to be given. By bounding the Riemannian length
of Euclidean arclength steps along curves, Eq. (37) becomes

(DX̃ )b1,b2 �
p

�M̃dE(x̃b1 , x̃b2) (40)

for any boundary points x̃b1 , x̃b2 2 B̃. The wormhole crite-
rion then becomes

CW(x̃i, x̃j) = (DỸ)i,jKR
i,j

(41)

where the generalised Riemannian threshold matrix KR is
now
KR

i,j = min
x̃b1 ,x̃b22B

(DỸ)i,b1+(DỸ)j,b2+
p

�M̃dE(x̃b1 , x̃b2).

(42)
The criteria CT (xi, xj) and CW(xi, xj) are chosen to be
the weights wi,j for the TCIE [79] and WHCIE [12] meth-
ods respectively. In particular, WHCIE demonstrates im-
pressive robustness and forms the current state-of-the-art in
finding consistent pairs on Riemannian manifolds.

The core idea behind the wormhole criterion is in
Eqs. (37) and (40), that find how to lower bound the man-
ifold’s metric length of Euclidean arclength infinitesimal
steps. We propose to take this idea and apply it to Finsler
manifolds.

Finsler wormhole criterion. Assume now that the data
manifold X̃ is equipped with a Finsler metric F̃ and that
there exists CF̃ > 0 such that the Finsler length of in-
finitesimal Euclidean arclength steps ds̃ is bounded by



F̃x̃(ds̃) � CF̃ kds̃k2. Then the Finsler length of curves
between boundary points can be lower bounded using the
Euclidean embedding distance.

Proposition 3. The Finsler distance on the Finsler manifold
X̃ between any points xi and xj is lower bounded by

(DX̃ )i,j � CF̃ dE(x̃i, x̃j)

Proof. The proof is an immediate generalisation of the ar-
guments in the Riemannian case. By integrating the lower
bound on Euclidean arclength steps F̃x̃(ds̃) � CF̃ kds̃k2,
and since the euclidean length of any curve between xi and
xj is at least that of the Euclidean straight segment between
them, we get the desired lower bound.

Denote KF the generalised Finsler threshold matrix
KF

i,j = min
x̃b1 ,x̃b22B

(DỸ)i,b1 + (DỸ)b2,j +CF̃ dE(x̃b1 , x̃b2).

(43)
We can then define the Finsler wormhole criterion CWF .

Definition 4 (Finsler wormhole criterion). The Finsler
wormhole criterion CWF is defined as

CWF (x̃i, x̃j) = (DỸ)i,jKF
i,j
.

By construction, the Finsler wormhole criterion only
finds consistent pairs.

Theorem 4 (CWF guarantees consistent pairs). The Finsler
wormhole criterion guarantees found pairs to be consistent.

Proof. The proof follows the exact same arguments as in
the Riemannian case, where now Eqs. (37) and (40) are re-
placed with Proposition 3.

We thus propose the weight scheme wi,j = CWF (x̃i, x̃j)
for Finsler MDS to provide robust embeddings to missing
components. For optimisation algorithms requiring a sym-
metric weight scheme, such as our Finsler Smacof algo-
rithm, we symmetrise it by taking the intersection wi,j =p
CWF (x̃i, x̃j)CWF (x̃j , x̃i). Note that the square root is

superfluous for binary criteria, but is not so when consid-
ering soft masks. In [12], the criterion is sometimes soft-
ened by considering the ratio between the computed short-
est path lengths and the criterion matrix, and cutting it off to
1. This allows to take into account almost consistent pairs
where there is only a small perturbation of the true geodesic
distance, providing a reasonable compromise between ac-
curacy and amount of data to rely on. We can soften our
criterion in the same fashion by taking: min

n
KF

DỸ
, 1
o

.
We now show in a useful example how to derive the

Finsler constant CF̃ when the Finsler metric is a Ran-
ders metric with isotropic uniform Riemannian component
F̃x̃(u) = kuk2 + !̃(x̃)>u. Taking u = ds̃ to be an in-
finitesimal Euclidean arclength tangent vector, its Finsler

length becomes minimal when ds̃ is oppositely aligned
with the Randers drift component !̃(x̃). This leads to
F̃x̃(ds̃) � (1 � k!̃(x̃)k2)kds̃k2. Assuming the knowledge
of ↵̃max = max

x̃
k!̃(x̃)k2 < 1, for instance if we are pro-

vided with the maximum possible norm of the current on
the manifold, we get F̃x̃(ds̃) � (1� ↵̃max)kds̃k2, meaning
that CF̃ = 1� ↵̃max.

D. Implementation Details and Additional Ex-
periments

D.1. Data Visualisation Experiments
We describe the implementation details in Appendix D.1.1
of experiments in Sec. 7.1 and present additional visuali-
sation results in Sec. 7.1. These simple experiments do not
require any advanced hardware, e.g. a commercial CPU suf-
fices.

D.1.1 Implementation Considerations

In the visualisation experiments, we embed data with
Finsler MDS into the canonical Randers space X = Rm,
with m 2 {2, 3}. The canonical Randers metric is chosen to
have the fixed asymmetry level ↵ = 0.5. All Finsler MDS
embeddings for visualisation are computed with the Finsler
SMACOF algorithm. Unless specified otherwise, they use
uniform weights wi,j . Recall that the traditional SMACOF
algorithm is well-known to be sensitive to initialisation. To
avoid getting stuck in bad local minima, it is considered
standard practice to initialise it with the Isomap [88, 96]
embedding, even if the weights wi,j are not uniform. Fol-
lowing this idea, we initialise the SMACOF algorithm with
the Isomap embedding to Rm applied to the symmetrised
dissimilarity matrix DS = D+D>

2 .
In practice, we found that pseudo-inverting the K ma-

trix for the Finsler SMACOF update (see Proposition 2) was
slow and unstable when there are many data points. To over-
come this issue, we first multiplied Eq. (29) by V > leading
to a more stable update rule requiring the pseudo-inversion
of a symmetric matrix

vec(Xk+1) = (K 0)† vec(B0(Xk)Xk � C 0), (44)
where the matrices K 0, B0(Xk), and C 0 are the modi-
fied matrices K 0 = (Im + !!>) ⌦ (V >V ), B0(Xk) =
V >B(Xk), and C 0 = V >C. In addition, we resorted to
the Generalized Minimal Residual method (GMRES) [83],
which is a fast alternative solver of linear systems, bypass-
ing the need to compute the Moore-Penrose pseudo-inverse
of the large matrix (K 0)† when the number of points N is
large. We share the seeded code to reproduce our data and
results.

Asymmetric Manifold Flattening. In this experiment from



the main paper and the additional one in the supplemen-
tary, we sample N = 3000 i.i.d. random vertices from the
Swiss roll. The unit Euclidean vector !̃, giving the di-
rection of the Randers metric equipping the Swiss roll, is
chosen to be intrinsically uniform along the length of the
Swiss roll. Note that although they are intrinsically uni-
form in the tangent planes Tx̃X̃ = R2, they are not uni-
form extrinsically when rotating these planes to be tangent
to the original embedding of the Swiss roll, as shown for
instance in Fig. 2. Denote !̂(x̃) 2 R3 the extrinsic embed-
ding of !̃ in the original embedding space R3 of the Swiss
roll manifold X̃ . To compute the asymmetric geodesic dis-
tances, we compute the symmetric k-Nearest Neighbour
(kNN) graph, with k = 10, based on the Euclidean dis-
tances in R3. Once the logical graph is computed, we com-
pute the distances on these edges using a first order approxi-
mation. If points x̃i and x̃j are neighbours, we approximate
dF̃ ↵̃(xi, xj) ⇡ kxj � xik2 + ↵̃!̂(xi)>(xj � xi), and as-
sign this distance to the directed edge from node i to node
j, and vice versa for the directed edge from node j to node
i. This procedure, which generalises the standard Isomap
[88, 96] approach, constructs an asymmetric weighted kNN
directed graph. We can now apply Dijkstra’s algorithm [34]
to compute the approximate geodesic distances between all
pairs of points. The results form the dissimilarity matrix D,
which is the input for the embedding algorithm. The result
in Fig. 2 corresponds to ↵̃ = 0.3.

Robustness to Holes. In this experiment, 2000 i.i.d. points
are sampled on the full Swiss roll, but points falling within
a rectangular region encoding the hole are removed. The
Randers metric equipping the manifold X̃ is the same as
in the Asymmetric Manifold Flatenning experiments on the
Swiss roll with ↵̃ = 0.5. We apply the same algorithm to
compute the Randers distance between points, with k = 15
in the kNN graph construction. To create an embedding that
is robust to the missing part, the weights are given by the
binary Finsler wormhole criterion, logically symmetrised:
wi,j =

p
CWF (x̃i, x̃j)CWF (x̃j , x̃i) (see Appendix C). To

compute the wormhole criterion, we assume that the met-
ric is behaved in the missing parts similarly to the rest of
the data, leading to a choice of ↵̃max = ↵̃ to compute the
constant CF̃ in Proposition 3.

Unflattening Current Maps. In this experiment from the
main paper and the additional one in the supplementary
(corresponding to Fig. 8), we sample N i.i.d. random points
in a rectangular region ⌦̃ of the plane R2. Given an un-
constrained current v̆(x̃i) 2 R2 at any point x̃i 2 ⌦̃, the
current is then chosen to be ṽ(x̃i) = ↵̃ v̆(x̃i)

maxjkv̆(x̃j)k2
. The

Randers metric at the sampled point x̃i is then chosen to
be F̃ (x̃i) = kuk2 � ṽ(x̃i)>u (see Appendix B). We then
apply the same algorithm as in the Asymmetric Manifold

Flattening experiment on the Swiss roll to compute Ran-
ders geodesic distances, using a kNN graph with k = 10
neighbours. Note that since the original space and its tan-
gent space coincide X̃ = Tx̃X̃ at all points x̃, the extrinsic
embedding of the drift component !̃(x̃) = �ṽ(x̃) is the
same as its intrinsic version !̂(x̃) = !̃(x̃).

For the experiment in the main paper, we sample N =
2000 points from the domain ⌦̃ = [0, 10]2. At any point
x̃i = (x̃(1)

i , x̃(2)
i )> 2 ⌦, we define the unconstrained cur-

rent field v̆(x̃i) =
�
sin(⌫x̃(1)

i ) + cos(⌫x̃(2)
i ), cos(⌫x̃(1)

i ) �
sin(⌫x̃(2)

i )
�>, with ⌫ = 2. The current field is constructed

with ↵̃ = 0.5. For the river experiment in the supple-
mentary, we sample N = 1000 points from the domain
⌦̃ = [0, 10] ⇥ [0, 1]. The unconstrained current at point
x̃i is given by v̆(x̃i) = (1� |2x̃(2)

i � 1|, 0)>. The current is
then constructed with ↵̃ = 0.2.

Revealing Graph Hierarchies In this experiment, we con-
struct a full and complete binary tree of depth h = 7, having
thus N = 2h+1 � 1 = 255 nodes. The edge from a parent
to it child is given the weight of 0.5, whereas the edge from
a child to its parent has a weight of 1.5. Additionally, we
add undirected edges between all nodes at the same height,
with a weight of 0.1. Given two nodes connected by an
edge, their distances is given by the edge weight. Asym-
metric geodesic distances between any two nodes are then
computed using Dijkstra’s algorithm, which constitute the
dissimilarity matrix D.

D.1.2 Additional Results

Figure 6. Flattening the Swiss roll equipped with a Randers metric
F̃ ↵̃ with various asymmetry levels ↵̃ given by F̃ ↵̃

x̃ (u) = kuk2 +
↵̃!̃>u and k!̃k2 = 1. We superimpose on the right the resulting
Finsler MDS embeddings in the 3D canonical Randers space with
fixed asymmetry ↵ = k!k2.

Asymmetric Manifold Flattening. By changing the value
of ↵̃, we vary the amount of asymmetry on the Swiss roll.
However, in this experiment, we do not change the asymme-
try measure of the canonical Randers space of the embed-



dings: ↵ is fixed. We superimpose in Fig. 6 the resulting
Finsler MDS embeddings for various asymmetry levels of
the data ↵̃ 2 {0, 0.1, 0.3, 0.5, 0.6}. In all cases, the em-
bedded Swiss roll resembles a flat 2D band in 3D, albeit
with varying vertical orientation. As expected, the higher
the value of ↵̃, the more the embedded Swiss roll becomes
vertical along the axis ~z of asymmetry. When the data is
(close to) symmetric, i.e. ↵̃ is (close to) 0, the embedding is
(close to) aligned with the xy plane. Finsler MDS thus not
only provides embeddings preserving the manifold struc-
ture, but its verticality also provides an intuitive visual cue
encoding the asymmetry of the data.

Figure 7. Flattening the original symmetric Swiss roll. The em-
bedding is either into the Euclidean space R3 with Isomap or into
the canonical Randers space R3 with our Finsler MDS. Finsler
MDS provides robust embeddings that generalises traditional sym-
metric embedding methods on symmetric data while revealing the
additional information that the data is symmetric.

Symmetric Manifold Flattening. We focus on the embed-
ding of the vanilla symmetric Swiss roll, i.e. ↵̃ = 0, to R3

using either the traditional MDS, with Isomap, or Finsler
MDS, with our Finsler SMACOF algorithm. These results
are presented without other values of ↵̃ in Fig. 7. For the
Isomap embedding to R3, the Swiss roll is not perfectly flat-
tened in the xy hyperplane. This incorrectly suggests that
the Swiss roll is not a flat Riemannian structure, i.e. with
effectively 0 Gaussian curvature. This error is due to small
noise in the estimate of the distance matrix D as Dijkstra’s
algorithm only provides an approximation to geodesic dis-
tances as geodesic paths are constrained to live on the neigh-
bourhood graph constructed from the data. To avoid this is-
sue, the Swiss roll is usually embedded to R2, yielding the
desired 2D flattened Swiss roll rectangle. In contrast, our
Finsler MDS embedding to the canonical Randers space R3

is flattened to the xy plane and is similar to the ideal 2D
Isomap embedding, as predicted by Theorem 2. Addition-
ally, our embedding also provides the information that the
original Swiss roll is a symmetric structure as all embed-
ded points have the same height. As such, Finsler MDS not
only robustly provides superior embeddings for symmetric
data that generalise the traditional methods, it also yields
additional information compared to them.

Dataset Cora Citeseer Gr-QC Chameleon Squirrel Arxiv-Year
|V| 2,708 3,327 5,242 2,277 5,201 169,343
|E| 5,429 4,552 14,496 31,371 198,353 1,166,243

Table 3. Summary of dataset statistics for link prediction tasks.
We note |V| and |E| the numbers of nodes and edges, respectively.

Unflattening Current Maps. In addition to the unflatten-
ing of the current map in Fig. 4, we also embed using Finsler
MDS the classic river manifold in Fig. 8. As explained
in Appendix B, from a timewise perspective, we equip the
river with a Randers field with !̃ = �ṽ, where ṽ is the cur-
rent field. The Finsler MDS embedding of the river leads
to an intuitive embedding clearly revealing the existence of
asymmetry between points upstream and downstream. This
contrasts with the original current map, even when enriched
with arrows to artificially break the Euclidean symmetry, as
they can be difficult to discern when numerous or with low
magnitude.

D.2. Digraph Embedding and Link Prediction Ex-
periments Implementation Details

We describe the setups and additional details of our exper-
iments in Sec. 7.2. The experiments are performed on a
NVIDIA DGX A100 GPU.

Datasets. For both the digraph embedding and link pre-
diction tasks, we evaluate on six publicly available directed
graph datasets: the citation networks Cora [89] and Cite-
seer [108], the arXiv collaboration network in general rela-
tivity and quantum cosmology (Gr-QC) [57], and three het-
erophilic graphs: Chameleon, Squirrel [82], and Arxiv-Year
[47]. The detailed statistics of these benchmarks are sum-
marized in Tab. 3.

Digraph Embedding Baseline. To utilize the direc-
tional property for learning efficient representations, we
propose computing embeddings in Finsler space instead
of Euclidean space. We note that while [60] explores a
Finsler-Riemannian framework for graph embedding, their
approach is not applicable to directed graphs. Therefore,
we do not include comparisons between their framework
and our Finsler representation for digraph embedding.

Link Prediction Baseline. For link prediction tasks, we
compare our method with NERD [51], DiGCN [97], Mag-
Net [112], DiGAE [53], ODIN [109], and DUPLEX [50].
NERD is a shallow method that uses node semantics based
on a random walk strategy to sample node neighbourhoods
from a directed graph. DiGCN introduces a spectral Graph
Neural Network (GNN) model built on digraph convolution,
utilizing Personalized PageRank as its foundation. MagNet



Figure 8. Embedding of the river map with a fixed current profile ṽ. The associated Randers drift component !̃ is in the opposite direction.
Plotting arrows on the map might lead to cluttered visualisations that make the asymmetry difficult to read even in this simple toy example.
In contrast the Finsler MDS embedding clearly reveals the asymmetric nature of the river while preserving its spatial straight property.

proposes the magnetic Laplacian to define graph convolu-
tions. Both DiGCN and MagNet are spectral-based meth-
ods. DiGAE is a digraph autoencoder model that employs
a directed GCN as its encoder. ODIN is a recent shallow
method that learns multiple embeddings per node to model
directed edge formation factors while disentangling inter-
est factors from in-degree and out-degree biases. DUPLEX
employs dual graph attention network encoders that operate
on a Hermitian adjacency matrix.

Digraph Embedding Setup. To assess the capacity of
the Euclidean and Finsler representations, we embed the
full data with a Multi-Layer Perceptron (MLP) and com-
pute the pairwise distances in the embedding space. We
implement our proposed method using PyTorch [72]. We
train the Euclidean embedding with Euclidean stochas-
tic gradient descent. Riemannian stochastic gradient de-
scent [8] generalises classical stochastic gradient descent
to optimization on Riemannian manifolds by replacing Eu-
clidean updates with retractions that map stochastic gra-
dients from tangent spaces back onto the manifold. For
the Finsler embedding, we train the embedding by adapt-
ing the Riemannian stochastic gradient descent from the
Riemannian metric with the canonical Randers metric de-
fined in Sec. 5. We consider the embedding space Rm

of various dimensions m 2 {2, 5, 10, 50}. For each di-
mension m, we use the Optuna [2] hyperparameter op-
timiser to choose the learning rate, the number of hid-
den layers, the hidden dimension, and the dropout prob-
ability within candidate sets. These candidate sets are
{5e�1, 3e�1, 2e�1, 1e�1, 5e�2, 1e�2, 5e�3, 1e�3} for the
learning rate, {1, 2, 3, · · · , 10} for the number of hidden
layers, {64, 128, 256, 512} for the hidden dimension, and
{0, 0.1, 0.2, · · · , 0.9} for the dropout probability.

Link Prediction Setup. We evaluate on two types of link
prediction tasks. The first task involves predicting the di-
rection of edges between vertex pairs u and v, where it is
known that there exists an edge between the two vertices
but not its direction: (u, v) 2 E or (v, u) 2 E . The sec-

ond task focuses on existence prediction, where the goal
is to determine whether (u, v) 2 E , considering vertex
pairs (u, v). For link prediction tasks, we divide the graph
datasets, by partitioning the edges randomly while preserv-
ing the graph connectivity, into 80% (of edges) for training,
15% (of edges) for testing, and 5% (of edges) for valida-
tion, following the work [112]. Performance is assessed by
measuring the Area Under the ROC Curve (AUC). The link
prediction quality is computed by the average performance
and standard deviation over 10 random splits. We utilize
the source code released by the authors for the baseline al-
gorithms and optimize their hyperparameters using Optuna
[2].
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