Adaptive Part Learning for Fine-Grained Generalized Category Discovery:
A Plug-and-Play Enhancement

Supplementary Material

In this section, we provide comprehensive information
including dataset and implementation details, further exper-
iment results, and discussions of limitations and impacts.
The structure is as follows:

 Section | - Dataset Details

* Section 2 - Implementation Details

* Section 3 - Hyperparameters

* Section 4 - Results on DINOv2

* Section 5 - Supplement Related Works
 Section 6 - Qualitative Analysis

* Section 7 - Part Discovery Visualization

* Section § - Limitations and Broader Impacts

1. Dataset Details
Dataset #Class(L/U) #Num(L/U)
CIFAR-10 [9] 5/10 12.5K/37.5K
CIFAR-100 [9] 80/100  20.0K/30.0K
ImageNet-100 [2] 50/100  31.9K/95.3K
CUB [14] 100/200 1.5K/4.5K
Stanford-Cars [8] 98/196 2.0K/6.1K
FGVC-Aircraft [10]  50/100 1.7K/5.0K
Herbarium 19 [12] 341/683  8.9K/25.4K

Table 1. Dataset information for labeled (L) and Unlabelled (U)
splits.

This section provides comprehensive details on all the
datasets utilized in our experiments, including the number
of classes and the number of samples for both labeled and
unlabeled splits. Table | presents the specific statistics.

2. Implementation Details

To comprehensively evaluate our proposed method, we take
SimGCD [16], SPTNet [15] and CMS [1]as baselines for
comparison. For all three methods, we keep their original
loss functions and hyperparameters unchanged but integrate
our part discovery and loss. Additionally, for SPTNet, we
also adopt its spatial visual prompting training scheme and
freeze the first 11 layers of the backbone for fine-tuning. All
experiments are conducted using a single RTX-3090 GPU,
with a fixed batch size of 128 and training epochs set to
200. We use the ViT-base DINO model, where the feature
dimension C'is 768 and the number of heads M is 12. The
number of part queries 7' is set to 12. Following the base-
line [1, 15, 16], we assume |C,,| is known in advance.

3. Hyperparameters

All  Known Novel
T=6 585 743 50.9
T=9 596 764 51.1
T=12 60.1 77.6 51.2

60.1 77.6 51.2
e=06 589 742 514
e=04 585 743 50.9
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Table 2. Ablation study of hyperparameters on the Stanford Cars.
T denotes the number of part queries, and e represents the thresh-
old for filtering from the attention map.

Table 2 shows the performance of our model under dif-
ferent hyperparameters 7" and e. The results indicate that
our method demonstrates good robustness across different
€ values, proving that meaningful part information can in-
deed enhance both discrimination and generalization, and
we also observe that as 7" increases, performance gradually
improves, which indicates that having more part queries en-
ables the model to focus on more finer-grained details in the
images, which is beneficial for the final classification. In
all our experiments, we set the number of part queries T'
to 12, € to 0.8, and all temperature coefficients to 1. All
other hyperparameters are inherited from the methods we
integrated.

4. Results on DINOv2

We conduct experiments using our method with the DI-
NOvV2 [11] backbone and the SimGCD baseline. The re-
sults are shown in the Table 3. Combined with the main ta-
ble in the text, this demonstrates that our APL consistently
achieves improvements across various fine-grained datasets
using different backbones.

5. Supplement Related Work

This section includes additional related works on Novel
Category Discovery.

Novel Category Discovery (NCD) aims to generalize the
classification of an unlabeled set by learning from both la-
beled and unlabeled sets, where the label space of the unla-
beled set, comprising novel categories, entirely differs from
that of the labeled one, known categories. The groundbreak-
ing works [5, 6] typically involve two stages. Initially, a



Methods CUB Stanford Cars FGVC-Aircraft AVG
All Known  Novel All Known  Novel All Known  Novel

GCD [13] 71.9 71.2 72.3 65.7 67.8 64.7 55.4 47.9 59.2 64.3

SimGCD [16] 71.5 78.1 68.3 71.5 81.9 66.6 63.9 69.9 60.9 69.0

Ours (SimGCD)  75.1 79.1 73.2 73.4 87.6 66.7 68.8 74.1 66.6 72.4

A +3.6 +1.0 +4.9 +1.9 +5.7 +0.1 +4.9 +4.2 +5.2 +3.4

Table 3. Evaluation on the Semantic Shift Benchmark (SSB) using DINOV?2 as the backbone.

feature extractor is obtained by training a classifier on the
labeled set. Subsequently, the feature extractor is employed
to extract features from the unlabeled data for clustering
or generating pseudo-labels for training a new classifier for
novel classes. Later, NCL [17] introduces contrastive loss
on labeled and unlabeled data to enhance the generaliza-
tion of learned representations, while OpenMix [18] miti-
gates the interference from incorrect pseudo-labels of unla-
beled samples by mixing these pseudo-labels with the cor-
rect labels of labeled samples. UNO [3] follows the path
of optimizing pseudo-labels, but it generates pseudo-labels
through optimal transportation. Unlike extracting pseudo-
labels solely for unlabeled data, [7] replays the pseudo la-
tent from the labeled data to avoid overfitting to unlabeled
one. Different from the above approaches, Cr-KD [4] evalu-
ates inter-class relationships between unlabeled and labeled
data, ensuring that novel class samples maintain a similar
distribution as known class counterparts.

6. Qualitative Analysis

(a) SimGCD Part t-SNE (b) Ours(SimGCD) Part t-SNE

Y

(¢) SimGCD Representation t-SNE (d) Ours(SimGCD) Representation t-SNE

Figure 1. t-SNE visualization of part features on CUB-200 and
image features on randomly sampled 10 classes on CIFAR-100.
Each color represents a specific part (category) in left (right) two
images.

In Figure 1, we present the t-SNE visualization of our
method. Figure 1(a) shows the result obtained by filter-
ing the local features from SimGCD using the DINO prior

across the entire dataset, while Figure 1(b) demonstrates
the t-SNE visualization of our resulted part features. Their
comparison demonstrates that our specially designed part
queries and the learning objectives for part discovery sig-
nificantly enhance the differentiation of parts with differ-
ent semantics, resulting in clear part boundaries in the fea-
ture space. Similarly, the comparison between Figure 1(c)
and Figure 1(d) illustrates our tighter clusters, particularly
evident in classes identified by brown, purple, and orange
markings.

7. Part Discovery Visualization

Figure 2. Some visualization of our part discovery. Each column
represents the part regions attended to by the same part query.

Figure 2 presents some visualization results of the atten-
tion maps of part queries, demonstrating that our method
successfully leverages the prior knowledge from DINO pri-
ors. It shows that our approach can spontaneously conduct
the model to converge towards semantically meaningful di-
rections without using part segmentation mask supervision,
while also exhibiting strict correspondence properties. For
additional examples, please refer to Figure 3.



Figure 3. More visualization of our part discovery.

8. Limitations and Broader Impacts

One potential limitation of our method is that its benefits
may be limited in very simplistic scenarios. This is be-
cause in such scenarios, distinguishing between different
categories does not necessitate detailed part information.
Additionally, in noisy environments, our method’s efficacy
may suffer due to complex noise, affecting part discovery.
Lack of accurate part ground truth annotation can also im-
pede performance. Furthermore, by introducing part dis-
covery into generalized category discovery, we can achieve
more nuanced and detailed image understanding, which can
improve various applications such as autonomous driving,

medical imaging, and surveillance, leading to safer and
more effective solutions. However, if the datasets used for
training contain biases, the model may inadvertently learn
and reinforce these biases, leading to unfair or discrimina-
tory outcomes.

Ethical Statements. Our research utilizes the pre-trained
DINO model and it is essential to recognize that DINO
may carry some biases from its training data. Remov-
ing all biases from a model is inherently difficult, and we
hope users consider these possible biases when using our
model.
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