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1. Implementation Details
For initialization, camera poses are assumed to be known
based on the full-view SfM methods, following the conven-
tions of few-shot settings. Aligning with the configuration
used in FSGS, we executed COLMAP by the parameters
shown in Tab. S.1 to produce a coarse pointcloud. To gen-
erate a fine pointcloud using DetectorfreeSfM, we config-
ured img resize to 2000 for the LLFF dataset and 1500 for
the Mip-NeRF360 dataset, while keeping other parameters
at their default values.

Table S.1. Initialization parameters for COLMAP.

Step Parameter Value

Feature Extraction

max image size 4032
max num features 32768

estimate affine shape 1
domain size pooling 1

Feature Matching max num matches 32768
guided matching 1

Triangulation
ba local max num iterations 40

ba local max refinements 3
ba global max num iterations 100

Considering the converge speed of few-shot renconstruc-
tion, we trained all scenarios for 5,000 iterations. As a
start, we focused on fully reconstructing the scene by the
initial pointcloud for the first 2000 iterations since the ini-
tial pointcloud is relatively accurate. In the subsequent 2500
iterations, adaptive density control (ADC) is utilized to pro-
gressively increase the number of Gaussians every 200 it-
erations. During the final 500 iterations, we fine-tune the
reconstruction with the number of Gaussians frozen. The
opacity reset trick is not applied for the number of Guas-
sians in the few-shot reconstruction usually won’t be overly
abundant. The training strategies for baseline methods re-
main unchanged. Learning rates are set to their default val-
ues.

2. Comparison of Initial Pointcloud
As shown in Fig. S.1, we visualize the coarse pointcloud
Xc and fine pointcloud Xf . Xc is generated directly by the
COLMAP and serves as the initial input for reconstructions
of 3DGS and other baseline methods, while Xf is derived
from the Attentional Pointcloud Augmentation (APA) tech-
nique based on Xc (more details can be found in Sec. 3.2
of main manuscript). Our technique significantly increases
the number of initial points, with some scene points boost-

ing nearly 10 times (e.g., Bonsai, Garden, Kitchen). More-
over, the points of Xf have a better density distribution
that matches the scene complexity. Xf successfully gen-
erates 3D points in regions with weakly pronounced texture
(e.g., the desktop in Fortress, the carpet in Horns, the table-
cloths in Kitchen) and peripheral areas (e.g., the ceiling in
Fern, the brown cabinet in Counter, the surrounding trees
in Stump), which paves the way for high-quality reconstruc-
tion.

Comparison of the results reveals that a lot of informa-
tion exists within the sparse views. The fine pointcloud Xf

can even reflect the rough structure of some scenes. For
instance, in Fortress and Kitchen, the basic content and
scene geometry are already well defined by the pointcloud
Xf , with the exception of partially occluded areas. How-
ever, the COLMAP produces only a small number of ac-
curate 3D feature points because of the limitations of view
tracks, so that filters out significant amounts of information.
Due to the view information is not fully explored during
the initialization stage, it becomes very challenging to find
an accurate optimization path in subsequent reconstruction.
Therefore, by retaining two-view tracks as an option for
pointcloud generation, we provide a high-quality and effi-
cient pointcloud initialization for optimization process, ul-
timately leading to more accurate and stable reconstruction
results.

3. Additional Results
Additional qualitative results for the LLFF and Mip-
NeRF360 datasets are shown in Fig. S.2 and Fig. S.3. All
methods successfully reconstruct the core scene geometry,
which is consistent with the conclusions in Sec. 4.2 of main
manuscript. However, 3DGS failed to produce acceptable
results for some regions with weakly pronounced texture
(marked by red boxes) and peripheral areas (marked by yel-
low boxes) that are typicially with sparsely distributed ini-
tial pointclouds (as shown in Fig. S.1), leading to unrealistic
artifacts such as blur and floaters. The improvements are not
obvious by other baseline methods. In contrast, our method
effectively addresses this issue, and gives a reasonable in-
terpretation of regions with weakly pronounced texture and
peripheral areas, resulting in the best reconstruction perfor-
mance. That is because the APA technique generates more
points in regions with complex structure but sparse density
distribution of the scene. This provides a good guidance
to Gaussians generation in the reconstruction stage, allow-
ing for capturing richer details, e.g., the carpet in Horn, the



Figure S.1. Comparison of coarse and fine pointcloud. The coarse pointcloud serves as the initial condition for 3DGS and other baseline
methods, while the fine pointcloud is utilized by our proposed EAP-GS.



Figure S.2. Qualitative Comparison on the rest of the LLFF datasets. We demonstrate the qualitative comparison results with our
main competitors 3DGS [13], DRGS [5], FSGS [40] and CoR-GS [35] on a certain testing view. The red and yellow boxes indicate the
significant difference in reconstruction of the regions with weakly pronounced texture and peripheral areas, respectively.

grassland in Bicycle and Flowers, the glass lid in Counter
and the chair in Kitchen.

In Tab. S.2 and Tab. S.3, we present quantitative results
for each scene in the LLFF and Mip-NeRF360 datasets. Our
method achieves leading scores in most scenarios while us-
ing fewer Gaussians and requiring less computation time. It
is worth noting that our method obtains a relatively smaller
improvement in PSNR compared to SSIM and LPIPS. That
is because PSNR measures the mean squared error between
two images and focus on smoothness, whereas SSIM and
LPIPS emphasize the similarity of structure and details. As
discussed, the APA technique significantly enhances the
representation of scene details. As for the main parts of
scene, all methods produce reasonable reconstruction re-
sults in most cases.



Figure S.3. Qualitative Comparison on the rest of the Mip-NeRF360 datasets. We demonstrate the qualitative comparison results with
our main competitors 3DGS [13], DRGS [5], FSGS [40] and CoR-GS [35] on a certain testing view. The red and yellow boxes indicate the
significant difference in reconstruction of the regions with weakly pronounced texture and peripheral areas, respectively.



Table S.2. Quantitative results on the LLFF datasets. The overall perforamnce of proposed EAP-GS and existing 3DGS-based methods
are compared on the LLFF dataset. The best and second-best scores are in red and orange respectively.

3DGS DRGS FSGS CoR-GS EAP-GS(Ours)

Fern

PSNR 15.53 19.04 19.47 19.60 19.79
SSIM 0.4592 0.6033 0.6435 0.6417 0.6610
LPIPS 0.3560 0.2260 0.2089 0.2293 0.1773

Time (min) 12.85 0.92 22.58 16.32 1.73
Number 507k 345k 194k 113k 168k

Flower

PSNR 16.00 17.93 19.34 19.69 19.65
SSIM 0.4300 0.4709 0.6117 0.6339 0.6153
LPIPS 0.3459 0.3401 0.2313 0.2296 0.2082

Time (min) 10.32 1.23 34.35 15.55 1.75
Number 298k 1239k 1346k 89k 128k

Fortress

PSNR 18.58 20.88 22.67 22.80 22.65
SSIM 0.5076 0.5873 0.6034 0.7010 0.7167
LPIPS 0.1917 0.1677 0.1404 0.1546 0.1106

Time (min) 11.85 0.95 33.07 15.37 1.65
Number 165k 186k 642k 59k 86k

Horns

PSNR 15.10 17.09 19.14 18.15 18.08
SSIM 0.4590 0.5444 0.6505 0.6276 0.6351
LPIPS 0.3459 0.3491 0.2175 0.2864 0.2192

Time (min) 10.60 0.78 23.82 14.45 1.83
Number 273k 214k 163k 73k 123k

Leaves

PSNR 11.80 13.37 15.83 14.40 14.55
SSIM 0.2471 0.3014 0.4831 0.4235 0.4362
LPIPS 0.3313 0.4904 0.1778 0.3017 0.2154

Time (min) 16.50 0.77 23.58 15.05 1.90
Number 1029k 746k 457k 194k 227k

Orchids

PSNR 14.16 14.80 15.44 14.77 15.89
SSIM 0.3675 0.3532 0.4305 0.4246 0.4557
LPIPS 0.2652 0.2835 0.2310 0.2713 0.2036

Time (min) 10.72 1.05 21.65 14.53 1.77
Number 255k 487k 188k 83k 131k

Room

PSNR 13.46 19.18 20.64 20.42 20.53
SSIM 0.5601 0.7748 0.8316 0.8454 0.8305
LPIPS 0.4999 0.2172 0.1584 0.1511 0.1662

Time (min) 10.65 0.87 20.98 13.40 1.58
Number 170k 144k 104k 35k 38k

Trex

PSNR 12.37 17.52 20.24 20.01 20.31
SSIM 0.4686 0.6423 0.7422 0.7559 0.7684
LPIPS 0.4040 0.2637 0.1454 0.1473 0.1329

Time (min) 12.32 1.00 23.90 14.97 1.75
Number 337k 346k 196k 80k 97k

Average

PSNR 14.63 17.48 19.10 18.73 18.93
SSIM 0.4374 0.5347 0.6246 0.6317 0.6399
LPIPS 0.3425 0.2922 0.1888 0.2214 0.1792

Time (min) 11.98 0.95 25.49 14.96 1.75
Number 379k 463k 411k 91k 125k



Table S.3. Quantitative results on the Mip-NeRF360 datasets. The overall perforamnce of proposed EAP-GS and existing 3DGS-based
methods are compared on the Mip-NeRF360 dataset. The best and second-best scores are in red and orange respectively.

3DGS DRGS FSGS CoR-GS EAP-GS(Ours)

Bicycle

PSNR 16.23 17.37 18.73 18.22 17.71
SSIM 0.2664 0.3443 0.3760 0.3775 0.3561
LPIPS 0.4424 0.6413 0.5410 0.5690 0.4779

Time (min) 30.68 1.37 7.65 70.25 2.82
Number 2239k 145k 254k 240k 599k

Bonsai

PSNR 15.80 18.25 18.51 18.35 19.08
SSIM 0.5024 0.5502 0.6028 0.6188 0.6468
LPIPS 0.3599 0.4151 0.3106 0.3380 0.2441

Time (min) 9.60 1.00 4.83 28.13 1.42
Number 460k 152k 127k 123k 275k

Counter

PSNR 16.82 17.71 17.91 18.69 18.12
SSIM 0.5059 0.5467 0.5761 0.6116 0.5962
LPIPS 0.3253 0.4062 0.3508 0.3332 0.2852

Time (min) 11.08 0.93 4.50 26.23 1.27
Number 486k 114k 67k 82k 216k

Flowers

PSNR 12.57 13.11 14.36 14.20 13.83
SSIM 0.1609 0.2117 0.2365 0.2426 0.2437
LPIPS 0.5257 0.7378 0.6347 0.7171 0.5513

Time (min) 27.42 1.40 8.28 60.70 2.48
Number 1954k 232k 214k 137k 719k

Garden

PSNR 17.58 18.56 19.06 19.56 19.54
SSIM 0.4421 0.4351 0.4564 0.4734 0.5268
LPIPS 0.3269 0.5123 0.4515 0.4711 0.3198

Time (min) 29.98 1.53 8.52 66.92 2.85
Number 1940k 336k 202k 220k 840k

Kitchen

PSNR 17.89 17.62 18.86 18.22 20.43
SSIM 0.6116 0.5133 0.6501 0.6395 0.7179
LPIPS 0.2757 0.4530 0.2865 0.2925 0.1871

Time (min) 14.27 0.98 5.00 28.92 1.52
Number 650k 88k 96k 112k 336k

Room

PSNR 18.53 20.07 20.27 20.97 21.16
SSIM 0.6478 0.6933 0.7121 0.7363 0.7488
LPIPS 0.2635 0.2963 0.2517 0.2455 0.2127

Time (min) 12.05 1.02 5.12 31.97 1.42
Number 652k 201k 117k 166k 322k

Stump

PSNR 15.32 16.35 16.96 16.70 17.59
SSIM 0.1776 0.3050 0.3145 0.3117 0.3028
LPIPS 0.4673 0.7353 0.5766 0.5986 0.4890

Time (min) 25.28 1.17 7.00 66.22 2.50
Number 2269k 337k 267k 192k 548k

Treehill

PSNR 13.80 14.91 16.75 16.48 15.25
SSIM 0.2822 0.3660 0.3972 0.3916 0.3591
LPIPS 0.5164 0.6732 0.5755 0.6105 0.5571

Time (min) 30.90 1.37 7.67 62.28 2.27
Number 2308k 255k 259k 265k 254k

Average

PSNR 16.06 17.11 17.93(4) 17.93(2) 18.08
SSIM 0.3997 0.4406 0.4802 0.4892 0.4998
LPIPS 0.3892 0.5412 0.4421 0.4639 0.3696

Time (min) 21.25 1.20 6.51 49.07 2.06
Number 1440k 207k 178k 171k 457k


