EAP-GS: Efficient Augmentation of Pointcloud for 3D Gaussian Splatting in Few-shot Scene Reconstruction

Supplementary Material

1. Implementation Details

For initialization, camera poses are assumed to be known based on the full-view SfM methods, following the conventions of few-shot settings. Aligning with the configuration used in FSGS, we executed COLMAP by the parameters shown in Tab. S.1 to produce a coarse pointcloud. To generate a fine pointcloud using DetectorfreeSfM, we configured *img_resize* to 2000 for the LLFF dataset and 1500 for the Mip-NeRF360 dataset, while keeping other parameters at their default values.

Table S.1. Initialization parameters for COLMAP.

Step	Parameter	Value
	max image size	4032
Feature Extraction	estimate affine shape	32768
	domain size pooling	1
Feature Matching	max num matches guided matching	32768 1
Triangulation	ba local max num iterations ba local max refinements ba global max num iterations	40 3 100

Considering the converge speed of few-shot renconstruction, we trained all scenarios for 5,000 iterations. As a start, we focused on fully reconstructing the scene by the initial pointcloud for the first 2000 iterations since the initial pointcloud is relatively accurate. In the subsequent 2500 iterations, adaptive density control (ADC) is utilized to progressively increase the number of Gaussians every 200 iterations. During the final 500 iterations, we fine-tune the reconstruction with the number of Gaussians frozen. The opacity reset trick is not applied for the number of Gaussians in the few-shot reconstruction usually won't be overly abundant. The training strategies for baseline methods remain unchanged. Learning rates are set to their default values.

2. Comparison of Initial Pointcloud

As shown in Fig. S.1, we visualize the coarse pointcloud \mathcal{X}_c and fine pointcloud \mathcal{X}_f . \mathcal{X}_c is generated directly by the COLMAP and serves as the initial input for reconstructions of 3DGS and other baseline methods, while \mathcal{X}_f is derived from the Attentional Pointcloud Augmentation (APA) technique based on \mathcal{X}_c (more details can be found in Sec. 3.2 of main manuscript). Our technique significantly increases the number of initial points, with some scene points boost-

ing nearly 10 times (e.g., *Bonsai*, *Garden*, *Kitchen*). Moreover, the points of \mathcal{X}_{f} have a better density distribution that matches the scene complexity. \mathcal{X}_{f} successfully generates 3D points in regions with weakly pronounced texture (e.g., the desktop in *Fortress*, the carpet in *Horns*, the tablecloths in *Kitchen*) and peripheral areas (e.g., the ceiling in *Fern*, the brown cabinet in *Counter*, the surrounding trees in *Stump*), which paves the way for high-quality reconstruction.

Comparison of the results reveals that a lot of information exists within the sparse views. The fine pointcloud \mathcal{X}_{f} can even reflect the rough structure of some scenes. For instance, in Fortress and Kitchen, the basic content and scene geometry are already well defined by the pointcloud \mathcal{X}_{f} , with the exception of partially occluded areas. However, the COLMAP produces only a small number of accurate 3D feature points because of the limitations of view tracks, so that filters out significant amounts of information. Due to the view information is not fully explored during the initialization stage, it becomes very challenging to find an accurate optimization path in subsequent reconstruction. Therefore, by retaining two-view tracks as an option for pointcloud generation, we provide a high-quality and efficient pointcloud initialization for optimization process, ultimately leading to more accurate and stable reconstruction results.

3. Additional Results

Additional qualitative results for the LLFF and Mip-NeRF360 datasets are shown in Fig. S.2 and Fig. S.3. All methods successfully reconstruct the core scene geometry, which is consistent with the conclusions in Sec. 4.2 of main manuscript. However, 3DGS failed to produce acceptable results for some regions with weakly pronounced texture (marked by red boxes) and peripheral areas (marked by yellow boxes) that are typicially with sparsely distributed initial pointclouds (as shown in Fig. S.1), leading to unrealistic artifacts such as blur and floaters. The improvements are not obvious by other baseline methods. In contrast, our method effectively addresses this issue, and gives a reasonable interpretation of regions with weakly pronounced texture and peripheral areas, resulting in the best reconstruction performance. That is because the APA technique generates more points in regions with complex structure but sparse density distribution of the scene. This provides a good guidance to Gaussians generation in the reconstruction stage, allowing for capturing richer details, e.g., the carpet in Horn, the

Figure S.1. Comparison of coarse and fine pointcloud. The coarse pointcloud serves as the initial condition for 3DGS and other baseline methods, while the fine pointcloud is utilized by our proposed EAP-GS.

Figure S.2. Qualitative Comparison on the rest of the LLFF datasets. We demonstrate the qualitative comparison results with our main competitors 3DGS [13], DRGS [5], FSGS [40] and CoR-GS [35] on a certain testing view. The red and yellow boxes indicate the significant difference in reconstruction of the regions with weakly pronounced texture and peripheral areas, respectively.

grassland in *Bicycle* and *Flowers*, the glass lid in *Counter* and the chair in *Kitchen*.

In Tab. S.2 and Tab. S.3, we present quantitative results for each scene in the LLFF and Mip-NeRF360 datasets. Our method achieves leading scores in most scenarios while using fewer Gaussians and requiring less computation time. It is worth noting that our method obtains a relatively smaller improvement in PSNR compared to SSIM and LPIPS. That is because PSNR measures the mean squared error between two images and focus on smoothness, whereas SSIM and LPIPS emphasize the similarity of structure and details. As discussed, the APA technique significantly enhances the representation of scene details. As for the main parts of scene, all methods produce reasonable reconstruction results in most cases.

Figure S.3. Qualitative Comparison on the rest of the Mip-NeRF360 datasets. We demonstrate the qualitative comparison results with our main competitors 3DGS [13], DRGS [5], FSGS [40] and CoR-GS [35] on a certain testing view. The red and yellow boxes indicate the significant difference in reconstruction of the regions with weakly pronounced texture and peripheral areas, respectively.

		3DGS	DRGS	FSGS	CoR-GS	EAP-GS(Ours)
Fern	PSNR	15.53	19.04	19.47	19.60	19.79
	SSIM	0.4592	0.6033	0.6435	0.6417	0.6610
	LPIPS	0.3560	0.2260	0.2089	0.2293	0.1773
	Time (min)	12.85	0.92	22.58	16.32	1.73
	Number	507k	345k	194k	113k	168k
Flower	PSNR	16.00	17.93	19.34	19.69	19.65
	SSIM	0.4300	0.4709	0.6117	0.6339	0.6153
	LPIPS	0.3459	0.3401	0.2313	0.2296	0.2082
	Time (min)	10.32	1.23	34.35	15.55	1.75
	Number	298k	1239k	1346k	89k	128k
	PSNR	18.58	20.88	22.67	22.80	22.65
	SSIM	0.5076	0.5873	0.6034	0.7010	0.7167
Fortress	LPIPS	0.1917	0.1677	0.1404	0.1546	0.1106
	Time (min)	11.85	0.95	33.07	15.37	1.65
	Number	165k	186k	642k	59k	86k
	PSNR	15.10	17.09	19.14	18.15	18.08
	SSIM	0.4590	0.5444	0.6505	0.6276	0.6351
Horns	LPIPS	0.3459	0.3491	0.2175	0.2864	0.2192
	Time (min)	10.60	0.78	23.82	14.45	1.83
	Number	273k	214k	163k	73k	123k
	PSNR	11.80	13.37	15.83	14.40	14.55
	SSIM	0.2471	0.3014	0.4831	0.4235	0.4362
Leaves	LPIPS	0.3313	0.4904	0.1778	0.3017	0.2154
200105	Time (min)	16.50	0.77	23.58	15.05	1.90
	Number	1029k	746k	457k	194k	227k
	PSNR	14.16	14.80	15.44	14.77	15.89
	SSIM	0.3675	0.3532	0.4305	0.4246	0.4557
Orchids	LPIPS	0.2652	0.2835	0.2310	0.2713	0.2036
	Time (min)	10.72	1.05	21.65	14.53	1.77
	Number	255k	487k	188k	83k	131k
	PSNR	13.46	19.18	20.64	20.42	20.53
	SSIM	0.5601	0.7748	0.8316	0.8454	0.8305
Room	LPIPS	0.4999	0.2172	0.1584	0.1511	0.1662
	Time (min)	10.65	0.87	20.98	13.40	1.58
	Number	170k	144k	104k	35k	38k
	PSNR	12.37	17.52	20.24	20.01	20.31
	SSIM	0.4686	0.6423	0.7422	0.7559	0.7684
Trex	LPIPS	0.4040	0.2637	0.1454	0.1473	0.1329
	Time (min)	12.32	1.00	23.90	14.97	1.75
	Number	337k	346k	196k	80k	97k
Average	PSNR	14.63	17.48	19.10	18.73	18.93
	SSIM	0.4374	0.5347	0.6246	0.6317	0.6399
	LPIPS	0.3425	0.2922	0.1888	0.2214	0.1792
	Time (min)	11.98	0.95	25.49	14.96	1.75
	Number	379k	463k	411k	91k	125k

Table S.2. Quantitative results on the LLFF datasets. The overall perforamnce of proposed EAP-GS and existing 3DGS-based methodsare compared on the LLFF dataset. The best and second-best scores are in red and orange respectively.

CoR-GS 3DGS DRGS FSGS EAP-GS(Ours) PSNR 16.23 17.37 18.73 18.22 17.71 SSIM 0.2664 0.3443 0.3775 0.3561 0.3760 Bicycle LPIPS 0.4424 0.6413 0.5410 0.5690 0.4779 Time (min) 30.68 1.37 7.65 70.25 2.82 Number 2239k 145k 254k 240k 599k PSNR 15.80 18.25 18.51 18.35 19.08 SSIM 0.5024 0.5502 0.6028 0.6188 0.6468 Bonsai LPIPS 0.3599 0.4151 0.3106 0.3380 0.2441 Time (min) 1.00 4.83 28.13 9.60 1.42 Number 460k 152k 127k 123k 275k 17.91 18.12 PSNR 16.82 17.71 18.69 SSIM 0.5059 0.5467 0.5761 0.5962 0.6116 Counter 0.4062 LPIPS 0.3253 0.3508 0.3332 0.2852 Time (min) 11.08 0.93 4.50 26.23 1.27 Number 486k 114k 67k 82k 216k PSNR 12.57 13.11 14.36 14.20 13.83 SSIM 0.1609 0.2117 0.2365 0.2426 0.2437 Flowers LPIPS 0.5257 0.7378 0.6347 0.7171 0.5513 1.40 8.28 60.70 2.48 Time (min) 27.42 Number 1954k 232k 214k 137k 719k PSNR 18.56 19.06 19.56 19.54 17.58 0.4351 SSIM 0.4421 0.4564 0.4734 0.5268 Garden LPIPS 0.3269 0.5123 0.4515 0.4711 0.3198 Time (min) 29.98 1.53 8.52 66.92 2.85 1940k 202k 220k 840k Number 336k PSNR 17.89 18.86 18.22 20.43 17.62 SSIM 0.6116 0.5133 0.6501 0.6395 0.7179 Kitchen LPIPS 0.2757 0.1871 0.4530 0.2865 0.2925 Time (min) 0.98 14.27 5.00 28.92 1.52 Number 650k 88k 96k 112k 336k PSNR 18.53 20.07 20.27 20.97 21.16 SSIM 0.6478 0.6933 0.7121 0.7363 0.7488 Room LPIPS 0.2635 0.2963 0.2517 0.2455 0.2127 Time (min) 12.05 1.02 5.12 31.97 1.42 322k Number 652k 201k 117k 166k PSNR 15.32 16.35 16.96 16.70 17.59 0.3050 0.3028 SSIM 0.1776 0.3145 0.3117 Stump LPIPS 0.4673 0.7353 0.5766 0.5986 0.4890 2.50 Time (min) 25.28 1.17 7.00 66.22 Number 2269k 337k 267k 192k 548k PSNR 13.80 14.91 16.75 16.48 15.25 SSIM 0.2822 0.3660 0.3972 0.3916 0.3591 Treehill LPIPS 0.5164 0.6732 0.5755 0.6105 0.5571 Time (min) 30.90 1.37 7.67 62.28 2.27 254k 255k 259k Number 2308k 265k 17.11 PSNR 16.06 17.93(4) 17.93(2) 18.08 0.3997 0.4406 0.4998 SSIM 0.4802 0.4892Average LPIPS 0.3892 0.5412 0.4421 0.3696 0.4639 Time (min) 21.25 1.20 6.51 49.07 2.06 Number 1440k 207k 178k 171k 457k

Table S.3. Quantitative results on the Mip-NeRF360 datasets. The overall perforamnce of proposed EAP-GS and existing 3DGS-basedmethods are compared on the Mip-NeRF360 dataset. The best and second-best scores are in red and orange respectively.