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Supplementary Material

This section presents a thorough overview covering

dataset specifications, implementation details, and addi-

tional experimental results. The content is organized as fol-

lows:

• Section 1 - Dataset Details

• Section 2 - Implementation Details

• Section 3 - Qualitative Analysis

• Section 4 - Computational Efficiency

• Section 5 - Limitations and Broader Impacts

1. Dataset Details

Dataset # Classes # Images

FGVCAircraft [11] 100 3,333

Caltech101 [4] 100 2,465

StanfordCars [10] 196 8,041

DTD [2] 47 1,880

EuroSAT [5] 10 5,400

Flowers102 [12] 102 2,463

Food101 [1] 101 25,250

OxfordPets [13] 37 3,680

SUN397 [16] 397 19,850

UCF101 [9] 101 3,783

ImageNet [3] 1,000 50,000

ImageNet-A [7] 200 7,500

ImageNetV2 [14] 1,000 10,000

ImageNet-R [6] 200 30,000

ImageNet-Sketch [15] 1,000 50,889

Table 1. Dataset information for Cross-Domain benchmark and

Out-of-Distribution benchmark.

This section provides an overview of the datasets used

in our experiments, detailing the number of classes and the

size of the test sets for each dataset. Table 1 summarizes

these statistics, including widely-used benchmarks such as

ImageNet, Caltech101, and StanfordCars, alongside spe-

cialized datasets like ImageNet-A and ImageNet-Sketch.

2. Implementation Details
To compute the inverse covariance matrix in a numerically

stable manner, we adopt a regularization-based approach.

Given the sample covariance matrix estimate Σ̂reg, directly

inverting it can lead to instability, particularly in cases

where the number of samples N is smaller than the

feature dimension D, or when the covariance matrix is

ill-conditioned. To address these issues, we employ a

regularized formulation. The regularized covariance matrix

is defined as:

Σ̂reg = (N − 1)Σ̂ + tr(Σ̂)ID,

where N is the number of samples, Σ̂reg is the sample

covariance matrix, tr(Σ̂reg) represents the trace of the

matrix Σ̂reg, and ID is the D-dimension identity matrix.

This formulation incorporates two components:(1) the

scaled covariance matrix (N − 1)Σ̂reg, which emphasizes

the sample covariance structure; (2) the trace-based reg-

ularization term tr(Σ̂reg)ID, which enhances numerical

stability by increasing the diagonal dominance of Σ̂reg. The

inverse of the covariance matrix is then computed as:

Σ̂−1 = D
(
Σ̂reg

)−1

,

Then we have:

Σ̂−1 = D
(
(N − 1)Σ̂ + tr(Σ̂)ID

)−1

.

This formulation ensures that the inverse covariance matrix

remains well-defined and numerically stable even in high-

dimensional, small-sample regimes. The trace-based regu-

larization effectively adjusts the off-diagonal elements, mit-

igating the impact of small eigenvalues that could otherwise

lead to instability. By applying this regularization scheme,

we achieve a robust estimation of Σ−1 that is suitable for

our Gaussian discriminant analysis for TTA.

3. Qualitative Analysis

In Figure 1, we present the t-SNE visualizations compar-

ing the classifier weights derived from the zero-shot CLIP

text encoder with those generated by our FreeTTA method.

Each point represents the classifier weight for a specific

class. Figure 1a and Figure 1b illustrate the results on the

Food101 dataset, where (a) represents the zero-shot CLIP

classifier weights and (b) shows the classifier weights af-

ter applying our FreeTTA approach using 80% of the test

set data for estimation. Similarly, Figure 1c and Figure 1d

provide the t-SNE results for the UCF101 dataset, with (c)

representing zero-shot CLIP and (d) showing FreeTTA. No-

tably, the regions highlighted by the red boxes in Figure 1a

and Figure 1c show classifier weights in zero-shot CLIP that

are closely clustered, indicating the presence of indistin-

guishable classes with highly similar decision boundaries.

In contrast, the dynamically optimized weights generated



(a) Food101 (Zero-Shot CLIP) (b) Food101 (Ours) (d) UCF101 (Ours)(c) UCF101 (Zero-Shot CLIP)

Figure 1. t-SNE visualizations of classifier weights for two datasets. (a) and (c) represent the zero-shot CLIP text encoder weights for

the Food101 and UCF101 datasets, respectively. (b) and (d) depict our FreeTTA classifier weights estimated after processing 80% of the

test data, and demonstrate the improved discriminative ability and robustness of the weights obtained through FreeTTA. The red boxes

highlight regions in (a) and (c) where zero-shot CLIP shows several indistinguishable classes with highly similar decision boundaries,

emphasizing the difficulty in separation.

by our FreeTTA method, as shown in Figure 1b and Fig-

ure 1d, exhibit better separation and improved discrimi-

native ability. This highlights the effectiveness of our ap-

proach in modeling the target domain to dynamically refine

classifier weights, thereby producing more robust and accu-

rate decision boundaries.

Our method demonstrates significantly better discrimi-

nation in both datasets, especially in semantically challeng-

ing categories. The comparison highlights the effectiveness

of FreeTTA in refining classifier weights, leading to more

accurate and robust decision boundaries, and ultimately en-

hancing performance in test-time adaptation.

4. Computational Efficiency

Method Testing Time Accuracy

TPT ∼10h 68.98

TDA ∼13min 69.51

Ours FreeTTA ∼30min 70.21

Table 2. Comparison of computational efficiency.

Table 2 compares the computational efficiency of our

proposed FreeTTA method with the classic TPT on the Im-

ageNet [3] dataset. As shown, our FreeTTA significantly

reduces the testing time from approximately 10 hours to 2

hours while achieving superior accuracy (70.21% compared

to 68.98%). This demonstrates the capability of FreeTTA

to balance computational cost and performance, making

it a practical choice for real-world applications with time

constraints. However, FreeTTA remains twice as slow as

optimization-free TDA [8], mainly due to matrix inversion

operations. Enhanced parallel processing may improve this

efficiency.

5. Limitations and Broader Impacts
A limitation of our method lies in its reduced impact under

minimal domain shifts, where dynamic adaptation may not

provide substantial accuracy improvements over other ap-

proaches. Additionally, test samples with high ambiguity

or excessive noise can challenge our entropy-based uncer-

tainty weighting mechanism, potentially leading to unstable

parameter updates. The lack of labeled data in test domains

further complicates the evaluation of adaptation accuracy,

making it difficult to fully assess performance in certain sce-

narios.

While the proposed method offers an efficient, training-

free solution for test-time adaptation, it remains reliant on

pre-trained VLMs like CLIP. As a result, any inherent biases

in the pre-trained model could inadvertently influence the

adaptation process and propagate to downstream tasks. To

address these concerns, future work may explore advanced

uncertainty modeling and bias mitigation techniques to en-

hance robustness and fairness across diverse applications.
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