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by Consensus Semantic Learning

Supplementary Material

1. Appendix A: Related Work
1.1. Contrastive Learning for Consistency Learning

Exploring consistency information from complete instances
across views is an effective way to alleviate instance obser-
vations missing and cluster distribution shifted in incom-
plete multi-view clustering (IMVC). Contrastive learning
[2, 5, 21, 29], as an unsupervised representation learning
[14, 22, 26], can learn the structural consistency informa-
tion from multi-view data bring closer instances from pos-
itive samples and separate instances from negative samples
[2, 5, 17, 21, 29], and has been successfully extended to
multi-view clustering (MVC) task.

Specifically, the most widely applied contrastive learn-
ing paradigms construct positive and negative pairs at the
instance-level. Despite instance-level paradigm have shown
exceptional capability in consistency representation learn-
ing, two primary limits, false negative noise from intra-
cluster observations for different instances and the local
smoothness of instance representations, damage represen-
tation learning due to the loss of view-specific information.

After all, clustering is a one-to-many mapping. Recog-
nizing false negative pairs (FPNs) causes detrimental im-
pacts on clustering confidence and robustness, a cluster-
level paradigm is proposed to discover cross-view cluster
correspondences for intra-cluster but unpaired observations
by reducing FPNs: TCL [11] selects pseudo-labels with
confidence-based criteria to mitigate false negative impacts,
while the noise-robust contrastive loss proposed by SURE
[28] further discriminate false negative pairs by using a
adaptive threshold calculated from distances of all positive
and negative pairs. DIVIDE [15] utilizes an anchor-based
approach to identify out-of-domain samples through high-
order random walks to mitigate the issue of false negatives.
They resolve the confusion of cross-view cluster correspon-
dences caused by instance-level paradigms, but at the cost
of cluster information within specific views, which hinders
semantic consistency in representation learning.

1.2. Imputation and Alignment for IMVC

In IMVC, to preserve even recover relationships between
data, imputation are supposed to handle missing data. Re-
garding the former, typical approaches include the cross-
view transfer paradigm like neighborhood-based recovery,
the cross-view interaction paradigm like adversarial gen-
eration or contrastive prediction. As members of transfer
paradigm, the core idea of CRTC [19] and ICMVC [1] is

to transfer the complete graph neighborhood relations from
other views to missing views. However, neighborhood-
based recovery, which uses cross-view neighbor informa-
tion for imputation, overlooks complementary information
specific to each view. To improve imputation performance,
generative models such as autoencoders (AE) and gener-
ative adversarial networks (GAN), as well as discrimina-
tive models like contrastive learning, discover correlations
across multi-view data to dynamically collaborate on both
imputation and clustering. For examples, [20], [27] and
[8] leverage the power of AEs in encoding latent repre-
sentations to mine view-specific information for imputa-
tion; CPM-Nets [30] and GP-MVC [18] encode a com-
mon representation with consistency and complementar-
ity information across views and employ adversarial strate-
gies to reconstruct the common representation to approxi-
mate generated observations within views; COMPLETER
[12] and DCP [13] unify cross-view consistency learning
and missing prediction into a deep framework to constrain
both complete paired observations and incomplete recov-
ered observations by maximizing mutual information and
minimizing conditional entropy across views. Although
they successfully apply view-specific information in impu-
tation, they lose the cluster structure information within
the missing views. Thus, Prolmp [10] proposed a novel
paradigm based on within-view prototypes and cross-view
observation-prototype relationships to further improve im-
putation performance.

However, the aforementioned imputation methods are
limited by unsupervised learning and cannot restore the
original distribution of view data. To achieve confident and
robust clustering, a feasible solution is cross-view consis-
tency alignment, generally categorized into cross-view clus-
ter assignments-based, prototypes-based and distributions-
based as the following works: To integrate soft labels from
various views for decision fusion, DIMVC [23] aligns view-
specific labels with a unified label using conditional en-
tropy loss. DSIMVC [16] argues that multi-view data share
common semantic information, so a contrastive loss is de-
signed to align cluster assignments across views for con-
sistency. CPSPAN [9] and Prolmp [10] employ Hungar-
ian algorithm and bounded contrastive loss [10] to calibrate
prototype-shifted across views. To reduce cross-view dis-
tribution discrepancy arising from complete and incomplete
data, APADC [25] minimize the mean discrepancy loss to
align view distributions in a common representation space.
SPCC [3] directly optimizes the distribution alignment loss



of K cluster across views.

Whether imputation or alignment, there is a deviation
compared to the original data, and this deviation increases
rapidly as the amount of available complete data decreases.
To this end, different other IMVC methods, our FreeCSL,
a novel consensus semantic-based paradigm, discover the
shared semantic space through consensus prototype-based
contrastive clustering, where all available observations are
encoded as representations with consensus semantics for
clustering. More specifically, during consensus learning, all
observations can straightforwardly reach consensus on clus-
ter semantic information without imputation and alignment.

2. Appendix B: Theorem Proof

Definition 1. Instance-level Consistency (IC): Ym # n, X}
and X’ are instance-level consistent across views if i = j
(they are cross-view observations of the same instance X),
expressed as I(x]",x}}) = 1 and 0 otherwise.

Definition 2. Cluster-level Consistency (CC): Ym # n,
x;" and X7 are cluster-level consistent across views if they
belong to the same cluster k, expressed as C (X[, x?) =1
and 0 otherwise.

Definition 3. Semantic-level Consensus (SC): Ym and n,
x;" and X achieve semantic-level consensus in MVC task
if all observations share a set of cluster prototypes C =
{ci}E | and argm]?xp(x?l,ck) = arg m]?xp(x;?,ck) ,

expressed as S(x;",x7') = 1 and 0 otherwise.

2.1. Proof of Theorem 1

Theorem 1. Consensus semantic learning yields more con-
fident and robust cluster assignments than instance- and
cluster-level paradigms.

Case 1: Instance-level paradigm pull paired obser-
vations (X*,X}') closer and push unpaired observations
(x{",x7) apart. However, if C(x{",x}}) = 1, intra-cluster
but unpaired observations are treated as negative pairs, in-
troducing false negative noise into clustering.

Case 2: Cluster-level paradigm encourages the observa-
tion X;" 1o find its cluster-level counterparts X’; from differ-
ent view n to mitigate false negative noisy. However, lack-
ing within-view clustering mapping for view-specific clus-
ter information, it explores cross-view cluster correspon-
dences but fails to ensure cluster semantics consistency
within views.

Case 3: Semantic-level paradigm construct a shared se-
mantic space based on consensus prototypes C for all ob-
servations to eliminate semantic gaps and capture semantic
relationships within clusters.

Proof. Define a general consistency learning objective as
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where Y = 1/0 mean positive/negative pairs, and pt/=

measure the similarity between positive/negative pairs.
Instance-level paradigms: When Y = I(x}",x7), the

objective of instance-level paradigms f;. is formulated as:
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When C(x}",x}) = 1, the instance-level paradigm incor-
rectly treats them as negative pairs, introducing false neg-
ative noise ¢ = P(C = 1|I = 0). P(C = 1|I = 0) is
false negative probability that is determined by the cross-
view same-cluster probability and the quality of the cluster
structure. It is defined as P(C' = 1|I = 0) = % + fr,
where [ quantifies the negative impact of missing rate r on
cluster structure quality.

Define the number of instance-level positive pairs N;,
the number of instance-level negative pairs N;,, the num-
ber of false negative pairs in unpaired observations Ny, in
views m, n as:

N
N = E[Z I, x1) =1] = (1 —7)?N,
i=j

N
Nin =E[>_I(x]",x}) = 0] = 2r(1 = r)N(N — 1),
i#]

N
Npn =E[) {Cx"x]) - I(I(x",x}) = 0)} = 1]

i#]
=2r(1-r)N(N —1)-P(C =1|I =0)
=2r(1—r)N(N —1) - ¢,
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The objective function f;. is further revised, and its ex-
pectation is as follows:
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* When maximizing f;., the noise term amplifies € the
penalty for negative pairs by (1 + €), which suppresses
intra-cluster similarity and undermines clustering perfor-
mance.



* Furthermore, since N;;, o T%, N;p o 72 and pXr,asr
increases, the impact of false negative noise p on model
performance will also increase.

Cluster-level paradigms: When Y = C(x]", x}), the
objective of cluster-level paradigms f,. is formulated as:

vV N
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Due to the different data distribution across views caused
by varying missing observations in each view, as well as the
lack of clustering interaction among instances within views,
there may be inconsistencies in cluster semantics and clus-
ter distributions between view m and n, introducing cluster
consistency errors §""".

Define C” = {c?}£ | as a set of cluster prototypes for
v-th view data X" and p(X"|c}) as the probability distri-
bution of X" in the k-th cluster. 6™ ™ include the following
two errors:

* Cluster semantic error dg": two observations x;", X7
from the same semantic cluster may be assigned to differ-
ent clusters across views. Formally, when S (xm x}) =

1, Cluster-level paradigm mistakes arg max p(x" ck) #*
arg max p(xj ,c},)) and can be quant1ﬁed as:
ot =A(C™, CM), (6)

where A(-) is the cost function for optimally matching the
prototypes between views, like cost matrix in Hungarian
Algorithm, Optimal transport distance in Optimal Trans-
port and contrastive loss in Contrastive Learning.

Cluster distribution error d;,"": the data distribution of the
same semantic cluster k may vary across views. It means

p(X™|c}') # p(X™|c}) and and can be quantified as:

K
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where D(-) quantifies the difference between the two distri-
butions, like Kullback-Leibler Divergence, Total Variation
Distance and Maximum Mean Discrepancy Distance.

Define the number of cluster-level positive pairs N, and
cluster-level negative pairs N, as:

N
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where P(y;" = y}') represents the probability that x;" and

x; belong to the same semantic cluster. If instances are
. . . 1
uniformly distributed across K clusters, P(y;" = ') = .

The objective function f.. is further revised, and its ex-

pectation is as follows:
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* To ensure cluster semantic and distributions consistency,
the cluster-level paradigm needs to optimize error term
E[6™"]. However, E[6"™"] cannot be entirely eliminated
and can only be minimized, which inevitably degrades the
model’s performance.

 Furthermore, the missing rate r disrupts the uniformity of
the original cluster distribution (P(y;" = y7') is no longer
equal to %), thereby introducing both false negative and
false positive noise in N, and N¢,. This perturbation
consequently exacerbates the degree of prototype and dis-
tribution shifts. As a result, E[6">"] will increase with r.

* Meanwhile, due to 6™" o« K and E[f..] x V(V —1), an
excessive number of clusters and views can cause E[§""]
to surge, significantly increasing the difficulty of opti-
mization.

Semantic-level paradigms: Define the quantities of
semantic-level positive and negative pairs:
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where P(y;" = y}}) still represents the same-cluster proba-
bility of cross-view observations.

When Y = S(x",x7}), the objective of semantic-level
paradigms f. is formulated as:
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Compared with IC in False negative noise mitiga-
tion: semantic-level positive pairs N,, are defined as
S(x;",x}) = 1, and its false negative noise € is quanti-
fied as:

) # argmax p(x ) | C = 1)
(12)

€se = P(arg max p(xi, ¢



* N, are constructed through consensus prototypes C,
avoiding cross-view matching:

ese = P(S(x",x7) = 0] C(x",x}) = 1) = 0

Therefore, N ;fL X € ~ 0,

* As the prototypes C are optimized, the distance between
different cluster prototypes ||ci — ci- || increases, causing
P(-) x exp(—||ck — cw||?/0?) to decay exponentially.
This drives N7 — 0.

Compared with CC in Cluster Consistency Errors op-
timization: According to Definition 3, semantic-level
paradigms enforces all views to share the same set of cluster
prototypes C, fundamentally eliminating cross-view cluster
semantic ambiguity. This is specifically manifested as:

* Cross-view Semantic Consistency of shared Prototypes:
Ym,n,c; = c; = c, directly eliminating cluster se-
mantic error 0.2" (i.e., 652" = 0).

e Implicit Constraint on Distribution Discrepancy: The
shared prototypes project data from each view into a com-
mon space through the mapping function (-), causing
the distribution discrepancy d;,”" to be constrained by the
embedding distance 55, oc [|(X™) — »(X™)||? — 0,
which is automatically minimized during optimization.

 False Positive/Negative Suppression: Due to sharing a set
of semantic prototypes, the estimation of P(y;" = y7') re-
mains % unaffected by the view missing rate r (compared
to P(yj* = yj) # 1/K in Cluster-level paradigms),
thereby avoiding false negatives and false positives.

The objective function f;. can be formally expressed in
expectation form as:

E[fsc] = V(V - 1){Nsp : E[p—i_} - Nsn : E[p_]}. (13)

¢ Confidence and Robustness for Noise € and Error §:
Compared to instance-level paradigms (containing ex-
plicit noise term (14¢)E[p~]) and cluster-level paradigms
(containing non-eliminable E[6"""]), the semantic-level
objective has no additional noise and error terms, and

#n» IV 7, decays during optimization.

* Confidence and Robustness for Missing Rate r: Due to
the shared prototype constraint, the ratio between N,
and N, remains stable (P(y/* = y;‘) = 1/K). Even
with high r, the objective function can still accurately
model the cluster structure.

O

2.2. Proof of Theorem 2

Theorem 2. Since Paired observations (X]*,X}') inher-
ently satisfy instance- and cluster-level consistency, they
can achieve semantic consensus via a shared set of proto-
types C.

Proof. Instance-level Consistency: According to Defini-

tion 1, paired observations (X}*,X}') satisfy the condition

(2

that both are cross-view observations of the same instance
x;, thus they are instance-level consistency I (X}",X}") = 1.
Two observations essentially belong to the same underlying
instance, with only view-specific noise or modality discrep-
ancies causing observational differences.

Cluster-level Consistency: X;* and X;' are cross-view
observations of the same instance, they must belong to the
same cluster. According to Definition 2, paired observations
(X}, X}') are instance-level consistency C'(X}",X}") = 1.
This further ensures that, in addition to being similar in
features, these two observations are also consistent in their
cluster structure, indicating that both are grouped into the
same semantic cluster across different views.

Semantic-level Consistency: According to Definition 3,
semantic-level consensus requires:

* Shared Cluster Prototypes: All observations share the
same set of prototypes C = {cj }5_,.

« Consistent Prototype Assignment: arg mkin p(T,cx) =
axg min p(T7', i),

Paired observations (X}, X;') satisfy the following con-
ditions:

* Condition 1: Since C is globally shared, observations
from all views are assigned based on the same set of pro-

totypes.
» Condition 2: Assume the nearest prototype for X" is cg:

arg mkin dx", c,) = k.

Since X" and X' belong to the same cluster ¢ (CC), and
prototype ci, is the central representation of this cluster,
the nearest prototype for X;* should also be cj. Otherwise,
if the nearest prototype for X}’ is ¢ (K’ # k), it would
contradict the cluster consistency (CC). Therefore, it must
satisfy:

arg min p(X" cx) = arg min p(Xi',ck) = k.

The conditions of SC all hold. According to Definition
3, the paired observations (X", X}') have reached semantic-

level consensus S(x}",x}) = 1.
O

3. Appendix C: Experiments
3.1. Experimental Settings

Datasets. From the perspective of clustering task complex-
ity in the number of clusters, views, feature dimensions, and
samples, six widely applied public datasets are selected for
experiments:

Competitors. To validate the effectiveness of our model
from the perspective of consistency learning, imputation
and alignment, we select seven state-of-the-art methods as
competitors and summarize them in Table ?? according to



Table 1. Multi-view benchmark datasets in experiments.

Dataset Samples  Clusters  Views Dimensionality
Yale [31] 165 15 3 3304/6750/4096
Caltech-5V[24] 1400 7 5 1984/512/928/254/40
NUSWIDEOBJ10[7] 6251 10 5 129/74/145/226/65
ALOI-100[4] 10800 100 4 77/13/64/125
YouTubeFacel0[6] 38654 10 4 944/576/512/640
NoisyMNIST[12] 70000 10 2 784/784

the consistency, imputation and alignment techniques they

employ.

* CPM-Net [30], encodes view-specific information into a
common representation based on instance-level consis-
tency and employs GANs to impute missing data across
views.

e COMPLETER [12], maximize mutual information and
minimize conditional entropy across views based on
instance-level consistency to achieve contrastive repre-
sentation learning and duel missing prediction.

e DIMVC [23], performs instance-level contrastive learn-
ing to construct a common representation, while aligns
view-specific cluster assignments with the common as-
signment for decision fusion.

* SURE [28], introduces an adaptive distance threshold for
positive-negative pairs to identify and penalize false nega-
tive pairs, enabling cluster-level contrastive learning. Ad-
ditionally, it transfers the cluster relationships from other
complete views to the missing views for imputation.

e Prolmp [10], conducts instance-level contrastive learning
and prototypes alignment to ensure consistency across
views, then fills in missing observations by referring to
prototypes in the missing views and the observation-
prototype relationships in other complete views.

e ICMVC [1], transfers graph relationships from complete
views to missing views for imputation based on instance-
level consistency. To further enhance consistency in clus-
ter assignments, it constrains view-specific assignments
to align with the high-confidence common representation.

* DIVIDE [15], leverages random walks to progressively
discover positive and negative pairs for cross-view clus-
ter alignment. Through cluster-level contrastive learning,
it explores cross-view consistency information to recover
missing views.

Table 2. SOTA methods categorized by the types of techniques for
consistency, imputation, and alignment.

Competitors Consistency Imputation Alignment

CPM-Nets (TPAMI'20) instance-level
COMPLETER (CVPR’21)  instance-level
DIMVC (AAAI'22) instance-level
SURE (TPAMI'23) cluster-level graph structure transfer
Prolmp (IJCAI'23) instance-level ~ sample-prototype relationship inheritance  prototype-based
ICMVC (AAAT'24) instance-level graph structure transfer assignment-based
DIVIDE (AAAI'24) cluster-level mutual information interaction

mutual information interaction \
mutual information interaction
assignment-based

[X2 o1 03 o5
Missing Rate

(b) NUSWIDEOBJ10

o3 o5
Missing Rate

(a) Yale

Figure 1. Visualization for Table 4 based on metric ACC.

3.2. Implementation details

Our model consists of three modules: reconstruction (REC)
module, consistency semantic learning (CSL) module and
cluster semantic enhancement (CSE) module, as well as
four components: encoder, decoder, contrastive clustering
and graph clustering. The implementation details are as fol-
lows:

Table 3. FreeCSL architecture details.

Component Layer Dimension
Encoder 4-layer MLPs view_dim — 500 — 500 — 2000 — 64
Decoder 4-layer MLPs 64 — 2000 — 500 — 500 — view_dim

64 — 64
64 — 128 — 64 — cluster_num

contrastive clustering
graph clustering

1-layer FC
2-layer GCNs and 1-layer FC

3.3. Competitiveness of FreeCSL

To further enhance the credibility of our model, we supply
a comparative experiment on Yale and NUSWIDEOBJ10
dataset, and present the comparison results, along with the
visualizations based on ACC and NMI metric, in Table 4
and Fig. 1. As mentioned in our main text, FreeCSL sur-
passes all competitors and demonstrates more stable perfor-
mance in various missing rates even on the small-sample
dataset Yale, as FreeCSL avoids the errors associated with
imputation and alignment.

3.4. Understanding FreeCSL

Ablation Study. The proposed FreeCSL contains three
modules: reconstruction (REC) module, cross-view con-
sistency semantic learning (CSL) module, and within-view
cluster semantic enhancement (CSE) module. To further
verify the importance of each module, we conducted ex-
tra ablation experiments on YoutubeFacel0, NoisyMNIST,
Yale and NUSWIDEOBJ10 datasets as shown in Table 5.
With the REC module as the baseline, both CSE module
and CSE module contribute significantly to the improved
performance of all datasets. Furthermore, due to the syner-
gistic effect of the three modules, our model exhibits more
confident and stable performance across different missing
rates compared to the ablation group.

Imputation- and Alignment-free CSL. To demonstrate
our model can learn semantic knowledge from view data



Table 4. Clustering performance comparisons on Yale and NUSWIDEOBJ10. The best and second-best results are highlighted in red and

blue.
Missing rates | r=0.1 | r=0.3 | r=05 r=0.7
Metrics ‘ ACC (%) NMI (%) ARI (%) ‘ ACC (%) NMI (%) ARI (%) ‘ ACC (%) NMI (%) ARI (%) ‘ ACC (%) NMI (%) ARI (%)
CPM-Nets 54.24 60.82 37.55 56.66 63.25 40.22 53.34 59.58 3422 55.76 58.20 33.10
COMPLETER 29.09 37.10 2.36 20.30 29.61 1.20 16.97 26.08 0.97 10.91 16.88 0.32
DIMVC 2791 32.27 7.94 23.12 26.79 2.85 21.76 26.92 3.46 34.32 39.47 11.21
@2 SURE 42.30 49.57 22.12 38.91 43.90 13.61 34.30 39.07 9.08 25.33 33.79 3.92
S ProImp 57.98 63.37 38.95 56.77 60.43 35.54 55.96 58.47 3291 52.12 56.11 30.19
ICMVC 49.70 61.52 30.64 50.30 61.62 31.49 46.67 58.91 27.84 4242 54.43 23.21
DIVIDE 55.15 56.37 28.97 4242 45.38 18.25 32.12 35.80 8.40 30.91 32.03 6.48
Our 62.42 65.87 45.71 60.00 64.73 41.33 60.00 63.14 40.85 60.61 60.30 37.69
- CPM-Nets 21.07 7.76 3.93 22.39 6.88 3.97 21.18 5.97 3.06 20.24 4.60 1.86
= COMPLETER 23.38 8.16 2.58 21.36 9.90 4.61 23.34 9.94 4.60 23.48 10.96 5.37
8 DIMVC 22.51 11.46 6.61 21.33 11.89 5.43 21.26 10.64 5.03 23.04 10.40 5.68
= SURE 20.87 10.90 5.39 21.83 11.24 6.07 21.93 11.14 5.92 22.78 10.54 6.16
=) Prolmp 22.81 11.31 5.85 22.88 11.40 6.11 23.26 11.20 6.20 22.55 11.24 5.94
= ICMVC 20.92 10.15 5.06 21.10 10.59 5.19 20.89 10.20 5.04 20.09 9.58 5.06
% DIVIDE 23.95 12.97 7.75 24.24 13.22 7.67 22.81 12.90 7.43 23.45 10.78 6.05
z Ours 25.61 16.31 8.75 24.68 15.14 7.95 24.03 14.10 7.69 23.88 12.67 6.82

Table 5. Ablation study on YoutubeFacel0, NoisyMNIST, Yale and NUSWIDEOBJ10. v denotes FreeCSL with the component and the

best results are highlighted in red.

Components ‘ r=0.1 ‘ r=0.3 r=0.5 ‘ r=0.7
Lree Lo Lge | ACC(%) NMI(%) ARI(%) | ACC (%) NMI(%) ARI(%) | ACC (%) NMI(%) ARI(%) | ACC (%) NMI(%) ARI(%)
e v 71.57 75.65 64.43 68.37 75.63 63.87 65.28 69.41 55.66 59.63 62.36 46.51
E v v 79.20 81.58 71.60 77.13 80.07 68.86 75.13 79.17 65.38 71.80 75.95 65.24
% v v 76.55 80.13 69.21 72.89 70.94 63.68 72.08 68.06 61.62 68.88 64.71 56.58
v v v 82.93 83.55 74.76 80.77 81.46 71.62 80.19 81.07 71.37 76.62 81.31 73.22
eV 33.45 26.44 16.81 25.25 14.80 8.01 23.52 15.46 7.46 24.17 15.46 6.68
E v v 98.17 97.04 96.97 96.27 93.69 93.91 95.25 89.08 90.38 90.96 81.15 82.37
7V v 53.38 50.60 37.16 39.24 37.59 20.84 33.89 29.02 14.19 33.08 26.70 14.23
z v v v 99.13 97.23 98.10 97.68 93.94 94.94 96.04 89.81 91.48 92.19 82.50 83.56
v 50.91 60.79 36.40 44.85 50.61 25.49 34.55 44.81 17.03 33.33 40.25 12.86
s v v 55.15 58.99 34.75 56.97 59.11 36.01 56.97 61.71 61.71 56.36 59.57 35.19
= v v 54.55 58.72 33.98 46.06 46.06 23.87 36.36 47.59 19.45 35.15 42.16 12.20
v v v 62.42 65.87 4571 60.00 64.73 42.14 60.00 63.14 40.85 60.61 60.30 37.69
gV 19.32 5.69 2.70 18.00 3.80 1.57 17.65 2.96 0.57 19.20 3.57 0.45
g v v 23.68 16.13 8.50 23.56 14.84 7.62 23.36 13.63 7.29 22.86 12.60 6.50
E v v 23.23 9.67 498 23.63 8.21 4.95 20.83 5.67 2.96 20.22 6.10 242
2 v v v 25.61 16.31 8.75 24.68 15.14 7.95 24.03 14.10 7.69 23.88 12.67 6.82

and achieve consistent and reliable clustering assignments
without imputation or alignment, we make efforts in two
aspects: conducting imputation experiments and visualizing
similarity matrices, both based on latent and semantic repre-
sentations learned from YoutubeFacel0, NoisyMNIST, and
NUSWIDEOBJ10 datasets.

Notably, both the latent and semantic representations
{Z7}Y_,, {H"}Y_, are outputs of our model after training.
The latent representation Z" refers to the output after the de-
coder but before the CSL module, while the semantic rep-
resentation H" has undergone nonlinear mapping through
the CSL module. We impute the missing views for two
sets {Z¥}Y_, and {H"}Y_,, with mean values based on
the neighborhood relationships observed in complete view
data. Finally, we perform K-means on consensus represen-
tations Z and H fused by the representation fusion manner
T({Z"}V_,, T({H"}Y_, described in Section 2.3 of our
main text.

In Table 6, at small missing rates, our model performs

comparably regardless of whether the missing data are im-
puted or not. As the missing rate increases and the available
information for imputation decreases, our model without
imputation exhibit superior robustness. Improper imputa-
tion introduces noise, while our model, combining the CSL
and CSE modules, successfully captures semantic knowl-
edge from view data (embedded in both latent and seman-
tic representations) and leveraging the fusion method 77(-),
effectively integrate the consistency and complementary in-
formation across views. Thus, our FreeCSL achieves ex-
cellent performance without incurring extra computational
cost or suffering clustering accuracy loss arising from im-
putation.

We visualize the cosine similarity matrices of the la-
tent representations {Z"}Y_,, semantic representations
{H"}Y_,, and their consensus representations Z, H
learned from YoutubeFacelO, NoisyMNIST, Yale and
NUSWIDEOBIJ10 datasets in Fig. 2-8, further confirming

the advantages of our model in consensus semantic learn-



Table 6. Imputation- and alignment-free study on YoutubeFacelO, NoisyMNIST, Yale and NUSWIDEOBJ10. ILR and ISR are filled by
K-NN imputation via cross-view graph for and semantic representations Z)  H™ _ The best results are highlighted in red.

Missing rates r=0.1 r=0.3 r=0.5 r=0.7
Metrics | ACC (%) NMI (%) ARI(%) | ACC (%) NMI (%) ARI(%) | ACC (%) NMI(%) ARI(%) | ACC(%) NMI(%) ARI(%)
= ILR 82.66 82.79 74.20 80.46 81.18 71.54 80.37 81.28 71.58 73.68 75.70 63.39
z ISR 82.72 82.86 72.69 81.07 82.63 72.82 80.63 81.67 72.00 73.91 75.84 63.81
2 FreeCSL 82.93 83.55 74.76 80.77 81.46 71.62 80.19 81.07 71.37 76.62 81.31 73.22
5 ILR 99.12 97.21 98.08 98.06 94.50 95.83 95.98 89.74 91.10 90.99 80.19 81.16
£ ISR 99.15 97.31 98.15 97.83 93.86 95.28 95.80 89.23 90.98 90.69 79.76 80.57
2 FreeCSL 99.13 97.23 98.10 97.68 93.94 94.94 96.04 89.81 91.48 92.19 82.50 83.56
o ILR 55.15 61.63 37.54 56.36 62.72 40.53 5333 59.89 35.05 50.30 55.21 29.07
= ISR 58.18 60.84 37.37 60.00 64.26 42.48 56.97 60.33 36.39 5273 55.56 29.91
FreeCSL 62.42 65.87 45.71 60.00 64.73 42.14 60.00 63.14 40.85 60.61 60.30 37.69
g ILR 24.09 15.29 7.48 24.50 14.06 7.39 2232 12.67 5.79 22.78 1139 532
g ISR 2422 16.44 8.53 25.07 15.26 8.33 23.93 13.79 7.13 2245 11.83 6.16
£ FreeCSL 25.61 16.31 8.75 24.68 15.14 7.95 24.03 14.10 7.69 23.88 12.67 6.82
ing. The experimental results on Four datasets commonly B .'. - . E
reflect two findings: e |y,
» The similarity matrices of semantic representations, com- EE_ i w a"siii
pared to latent ones, show a clearer and more uniform R ; i i
block structure along the diagonal. This indicates that the . s, |- =
semantic representations, jointly optimized by the CSL @ 2z (b) Z» @z

and CSE modules, are well-suited for clustering task.

e Our consensus prototype-based semantic learning and
consensus representation-based semantic clustering, ef-
fectively reduces entropy within clusters and enhances
more confident assignments by integrating view-specific
information.
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Figure 2. Similarity matrices of {Z"},—1, Z on YouTubeFacel0
with = 0.5.
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Figure 3. Similarity matrices of {H"}4_,, H on YouTubeFace10
with r = 0.5.
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Figure 4. Similarity matrices of {Z"}2_; and Z, {H"}2_, and
H on NoisyMNIST with » = 0.5.

Figure 5. Similarity matrices of {Z"}5_, Z on Yale with = 0.5.
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Figure 6. Similarity matrices of {H"}>_;, H on Yale with r =

0.5.
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Figure 7. Similarity matrices of {Z“}5_; and Z on
NUSWIDEOBIJECT10 with r = 0.5.
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Figure 8. Similarity matrices of {H"}>_; and H on

NUSWIDEOBIJECT10 with » = 0.5.

3.5. Analysis on FreeCSL

Parameter Sensitivity Analysis. As in Section 3.5, we
perform a parameter sensitivity analysis on the number
of neighbors A and the regularization coefficient ¢ in
graph clustering, on YoutubeFacelO, NoisyMNIST, Yale



and NUSWIDEOBIJ10 datasets. Fig. 9 shows our model
is highly stable, with minimal performance fluctuation even
when A and ( are adjusted to ranges of 3 to 32 and 0.05
to 0.5, respectively. A smaller number of neighbors A
and more relaxed regularization constraints ¢, will yield
higher clustering accuracy (ACC). Except for the large-
scale NoisyMNIST dataset, where a larger number of neigh-
bors effectively enhance model performance by aggregating
more useful neighbor information to discover cluster struc-
tures. In conclusion, our model present outstanding perfor-
mance in complex clustering tasks without sacrificing com-
putational resources for clustering accuracy or relying on
strict regularization constraints.
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Figure 9. Parameter analyses for ¢ and A with r = 0.5.

(a) Pre-training on Youtube-
Facel0 (NMI = 69.41%)

(b) Training on YoutubeFacelO
(NMI = 81.07%)
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Figure 10. Visualization on YoutubeFacelO and Yale with r =
0.5.

3.6. Visualization for Consensus Semantic Clusters

Referring to true labels, we visualize the clustering effect of
consensus semantic representations on YoutubeFacel0 and
Yale with the setting of missing rate = 0.5, shown in Fig.
10 respectively. We can observe that after the training of our
model, all instances converge toward their respective clus-
ters, where instances within the same cluster become more
compact, and instances from different clusters are separated
far away. In addition, the visualization results of the proto-
types of each cluster further confirm that through consensus
prototype-based semantic learning, the shifted prototypes
are re-estimated and accurately calibrated without the need
for extra alignment processes.
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