
NoiseCtrl: A Sampling-Algorithm-Agnostic Conditional Generation Method for
Diffusion Models

Supplementary Material

Proof for Fast Estimation in Polar Coordinates

Theorem:
Letψ′ be a randomly chosen point in C. By using Ly(ψ) ≈ Ly(ψ

′)+
[
∇ψ′Ly(ψ

′)
]T

(ψ−ψ′), optimization (??) simplifies
to:

argmin
ψ

[
∇ψ′Ly(ψ

′)
]T

(ψ−ψ′)

s.t. ψ ∈ C
(1)

This linear optimization achieves its minima at the boundary of C. The analytical expression thus is:

ψ∗
k =

{
0, if ∇ψ′

k
Ly(ψ

′) ≥ 0

π − ϵ, if ∇ψ′
k
Ly(ψ

′) < 0
(2)

ϕ∗ =

{
0, if ∇ϕ′Ly(ψ

′) ≥ 0

2π − ϵ, if ∇ϕ′Ly(ψ
′) < 0

(3)

where ϵ is a very small positive number used to ensure that the variables approach their upper bounds without exceeding
them.

Proof: The theorem approximates Ly(ψ) using the expression Ly(ψ
′) +

[
∇ψ′Ly(ψ

′)
]T

(ψ − ψ′). Since Ly(ψ
′) is a

constant, the optimization problem (??) simplifies to:

argmin
ψ

[
∇ψ′Ly(ψ

′)
]T

(ψ−ψ′)

s.t. ψ ∈ C
(4)

Given that ψ′ is a constant, this optimization can be further reduced to:

argmin
ψ

[
∇ψ′Ly(ψ

′)
]T
ψ

s.t. ψ ∈ C
(5)

Since
[
∇ψ′Ly(ψ

′)
]T
ψ is a linear function, its minimum is achieved at the boundary of C. Therefore, we have:

ψ∗
k =

{
0, if ∇ψ′

k
Ly(ψ

′) ≥ 0

π − ϵ, if ∇ψ′
k
Ly(ψ

′) < 0
(6)

ϕ∗ =

{
0, if ∇ϕ′Ly(ψ

′) ≥ 0

2π − ϵ, if ∇ϕ′Ly(ψ
′) < 0

(7)

Proof for Fast Estimation in Cartesian Coordinates
Theorem:
Substituting the angle vector ψ in polar coordinates with a direction vector d in cartesian coordinates offers an alternative
method for determining the direction. To be precise, let S represent the sphere surface with radius 1, the linear optimization
problem (??) can be transformed to

argmin
d

[
∇z′L′

y(z
′)
]T

(∥z′∥2d− z′)

s.t. d ∈ S
(8)

where L′
y(z

′) = E(ẑ0|t(µθ(zt+1, t+1)+σt+1z
′),y) and z′ is a random Gaussian point. According to [1], the closed-form

solution of this manifold optimization problem can be formulated as

d = −
∇z′L′

y(z
′)

||∇z′L′
y(z

′)||2
. (9)

Proof: According to Equation (??), we have

Ly(ψ) = E(ẑ0|t(µθ(zt+1, t+ 1) + σt+1T (rt+1,ψ)),y) (10)

Due to randomness of rt+1, it is reasonable to take a Gaussian sample z to substitute ψ, and we thus have:

L′
y(z) = E(ẑ0|t(µθ(zt+1, t+ 1) + σt+1z),y) (11)

This equation implies that we take the direction on the sphere surface with radius ∥z∥2 to represent the angular ψ. Thus the
optimization problem (4) can be reduced to

argmin
z

[
∇z′L′

y(z
′)
]T

(z− z′)

s.t. z ∈ ∥z′∥2S
(12)

where z′ is a random Gaussian point and ∥z′∥2S denotes the sphere surface with the radius ∥z′∥2. We can further transform
it to

argmin
d

[
∇z′L′

y(z
′)
]T

(∥z′∥2d− z′)

s.t. d ∈ S
(13)

Due to the constant z′, we have

argmin
d

[
∇z′L′

y(z
′)
]T

d

s.t. d ∈ S
(14)

According to [1], the closed-form solution of this manifold optimization problem can be formulated as

d = −
∇z′L′

y(z
′)

||∇z′L′
y(z

′)||2
. (15)

Proof for κ Investigation

Theorem:

E[dTu] =
κ

κ+ (n− 1)
. (16)

Proof: For a Von Mises–Fisher distribution with mean direction u and concentration κ, the expected value is

E[u] =
In

2
(κ)

In
2 −1(κ)

u (17)

We want to compute the expected value of the dot product between the random vector u and the mean direction d.

E[d⊤u] =

∫
Sn−1

dTu · κ
n
2 −1

(2π)
n
2 In

2 −1(κ)
exp(κdTu) dd.

The von Mises-Fisher distribution is isotropic, meaning that it is symmetric with respect to rotations around the direction of
the mean vector d. Thus, without loss of generality, we can assume that d = (0, 0, · · · , 1) by rotating the coordinate system.
This simplification reduces the problem to computing the first moment of the distribution where the mean direction is aligned
with the last coordinate. Thus, we have

E[dTu] =
In

2
(κ)

In
2 −1(κ)

(18)

We observe that SciPy offers the ‘scipy.special‘ module to compute the modified Bessel function, specifically In
2 −1(κ).

However, this implementation is not effective for large values of κ. Consequently, it becomes infeasible to directly compute

the ratio
In

2
(κ)

In
2

−1
(κ). To address this issue, we propose an approximation method. Notably, the modified Bessel function is

defined as follows:

Iν(κ) =

∞∑
m=0

1

m!Γ(m+ ν + 1)

(κ
2

)2m+ν

The recurrence relation for modified Bessel functions is given by:

Iν−1(κ) =
2(ν − 1)

κ
Iν(κ) + I ′ν(κ)

and similarly:

Iν+1(κ) =
2ν

κ
Iν(κ)− I ′ν(κ)

For ν = n
2 , we can specifically write:

In
2 −1(κ) =

n− 2

κ
In

2
(κ) + I ′n

2
(κ)

The ratio of modified Bessel functions
In

2
−1(κ)

In
2
(κ) can be computed by substituting the recurrence relation into the expression

for the ratio. Starting with the recurrence relation:

In
2 −1(κ)

In
2
(κ)

=

n−2
κ In

2
(κ) + I ′n

2
(κ)

In
2
(κ)

Dividing through by In
2
(κ), we get:

In
2 −1(κ)

In
2
(κ)

=
n− 2

κ
+

I ′n
2
(κ)

In
2
(κ)

For large κ,
I′
n
2
(κ)

In
2
(κ) ≈ 1. Substituting this into the ratio:

In
2
(κ)

In
2 −1(κ)

≈ κ

κ+ (n− 2)

For small values of κ, particularly as κ → 0, the modified Bessel functions Iν(κ) have the following asymptotic behavior:
1. In

2
(κ) ∼ κ

n
2

2
n
2 Γ(n

2)
for small κ

2. In
2 −1(κ) ∼ κ

n
2

−1

2
n
2

−1Γ(n
2 −1)

for small κ

As κ → 0, we can look at the ratio of these two Bessel functions:

In
2
(κ)

In
2 −1(κ)

∼
κ

n
2

2
n
2 Γ(n

2)

κ
n
2

−1

2
n
2

−1Γ(n
2 −1)

=
κ

2
·
Γ
(
n
2 − 1

)
Γ
(
n
2

)

At κ = 0, the ratio approaches 0 because κ is the dominant factor in the numerator, and the ratio is proportional to κ.
Therefore, we have:

In
2
(κ)

In
2 −1(κ)

→ 0 as κ → 0

This behavior is analogous to the simplified expression κ
κ+(n−1) .

Combining the insights from the previous discussion, we find that for both large and small values of κ, the ratio of the
modified Bessel functions of the first kind can be approximated as follows:

In
2
(κ)

In
2 −1(κ)

≈ κ

κ+ (n− 1)
≈ κ

κ+ (n− 2)

This approximation provides a useful simplification for computational purposes, especially when dealing with the ratio of
Bessel functions. It highlights the behavior of these functions in different regimes of κ, offering a practical tool for numerical
computations and theoretical analyses.

DDPMfast,2 : An Example of NoiseCtrl

Algorithm 1 DDPMfast,2 Sampling

1: Input: pure noise zT , iteration number T , concentration parameter κ.
2: for t = T to 1 do
3: µθ(zt, t) =

1√
αt
zt − 1−αt√

αt

√
1−ᾱt

ϵθ(zt, t)

4: Determine d by solving optimization (??)
5: ϵ′t = ru, where r ∼ fr(r), u ∼ fu;d,κ(u;d, κ)
6: zt−1 = µθ(zt, t) + σtϵ

′
t

7: end for
8: Return z0

‘‘‘
noise_scheduler = DDPMScheduler.from_pretrained(path, subfolder="scheduler")
for t in timesteps:

Algorithm 1 Line3: Default reverse process
latent_model_input = torch.cat([latents] * 2)
noise_pred = unet(latent_model_input, t, text_embeddings).sample
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + 7.5 * (noise_pred_text - noise_pred_uncond)
prev_latent = noise_scheduler.step(latents, t, noise_pred)

Algorithm 1 Line4: Compute gradient to obtain the direction
torch.enable_grad(True)
variance_noise = torch.randn_like(prev_latent)
x = variance_noise.detach().clone().requires_grad_(True)
prev_x = prev_sample + sigma_t * x
prev_t = noise_scheduler.previous_timestep(t)
pred_cond = cond_net(prev_x, prev_t)
loss = torch.nn.functional.mse_loss(

pred_cond.float(), target.float(), reduction="mean")
grad = torch.autograd.grad(

loss, x, grad_outputs=torch.ones_like(loss), create_graph=True)[0]
grad_direction = grad / torch.norm(grad.view(x.shape[0], -1), dim=-1)

Algorithm 1 Line5: Compute conditional noise
kappa = torch.Tensor([1e+4]).cuda()
grad_direction = VonMisesFisher(

grad_direction.flatten(), kappa).rsample(1)[0].reshape(1, c, h, w)
radius=chi2_dist.sample((bsz,)).cuda().sqrt()
variance_noise = (-radius * grad_direction)
variance_noise = variance_noise.detach().requires_grad_(False)
torch.enable_grad(False)

Algorithm 1 Line6: compute the final previous timestep latents
latents = prev_sample + sigma_t * variance_noise

‘‘‘

More Results of NoiseCtrl with Fast Direction Estimation and the Second-Type Distribution

D
ep

th
Condition

two

swiss

rolls

DDPMfast,2 DDIMfast,2 Eulerfast,2 LCMfast,2 SAfast,2 DPMfast,2

C
an

ny

snowy

moun-

tains

H
E

D

boat

at

sea

M
L

SD

books

in a

bookcase

Se
g

a

rabbit

doll

N
or

m
al head-

phones

on table

Sk
el

et
on a

man

singing

L
oc

at
io

n TV

mounted

on wall

Sk
et

ch

camera

on the

table

St
yl

e wind

blows

wheat

Figure 1. Visual Illustration for NoiseCtrl with Fast Direction Estimation and the First-Type Distribution as described in Equation (??).

Visual Comparison For NoiseCtrl with Four Configurations and Six Sampling Algorithms
D

ep
th

Condition

a plume of
smoke rising

from the top of
a mountain

prompt DDPMslow,1 DDPMslow,2 DDPMfast,1 DDPMfast,2

C
an

ny

Condition

a bouquet of
radiant

sunflowers
in a rustic vase

prompt DDIMslow,1 DDIMslow,2 DDIMfast,1 DDIMfast,2

H
E

D

Condition

a hand-held bell
with a gleaming
brass bowl and

a wooden handle

prompt Eulerslow,1 Eulerslow,2 Eulerfast,1 Eulerfast,2

M
L

SD

Condition

a modern
staircase with
wooden steps

prompt LCMslow,1 LCMslow,2 LCMfast,1 LCMfast,2

Se
g

Condition

two glasses
of wine

are placed
on the bar

prompt SAslow,1 SAslow,2 SAfast,1 SAfast,2

N
or

m
al

Condition

a purse placed
on a round table

with a wall
in the background

prompt DPMslow,1 DPMslow,2 DPMfast,1 DPMfast,2

Figure 2. NoiseCtrl Visual Comparison with Four Configurations (fast/slow direction estimation methods and two noise sampling distri-
butions (??) (??)) and Six Sampling Algorithms (DDPM, DDIM, Euler, LCM, SA and DPM) for Six Conditions (Depth, Canny, HED,
M-LSD, Seg and Normal). The first column delineates the conditions, the second column records the text prompts. Columns three and
four document the performance of four distinct NoiseCtrl configurations, with each row corresponding to a different sampling algorithm.
It is straightforward to confirm that all four NoiseCtrl variants are capable of yielding satisfactory results.

References
[1] Lingxiao Yang, Shutong Ding, Yifan Cai, Jingyi Yu, Jingya Wang, and Ye Shi. Guidance with Spherical Gaussian Constraint for

Conditional Diffusion. In International Conference on Machine Learning, 2024. 2

