RainyGS: Efficient Rain Synthesis with Physically-Based
Gaussian Splatting (Supplementary Material)

QIYU DAI", School of Intelligence Science and Technology, Peking University, China

XINGYU NI, School of Computer Science, Peking University, China

QIANFAN SHEN, School of EECS, Peking University, China

WENZHENG CHENT, Wangxuan Institute of Computer Technology, Peking University, China
BAOQUAN CHEN T, School of Intelligence Science and Technology, Peking University, China
MENGYU CH UT, School of Intelligence Science and Technology, Peking University, China

The supplementary materials offer a detailed explanation of our RainyGS, covering Scene Modeling
in Sec. A, Auxiliary Map Extraction in Sec. B, Rain Simulation on Height Maps in Sec. C, and
Screen-Space Reflection in Sec. D. Additionally, we present results and performance analyses
from various experimental scenes in Sec. E. To further illustrate our method, we include a video
demonstrating the dynamic synthesis of rain.

A DETAILS OF SCENE MODELING
A.1 Normal Prior Supervision

We employ PGSR [Chen et al. 2024] as a unified module for appearance and geometry reconstruction.
While PGSR achieves state-of-the-art quality, it still exhibits noticeable artifacts in texture-less
regions and areas with transparent or reflective materials, such as floors, walls, and car windows
(as shown in Fig. 9). We demonstrate that introducing normal priors from a pretrained monocular
normal estimation model [Bae and Davison 2024] to supervise the rendered normal maps can
effectively improve both the rendering fidelity and geometric accuracy of PGSR. This further leads
to higher-quality auxiliary maps, including depth maps, normal maps, and height maps, which are
essential for downstream rain simulation.

A.2 Comparison of Scene Modeling Methods

An alternative approach to scene modeling is combining a decomposed Radiance Field (e.g., Gaus-
sianShader [Jiang et al. 2024]) with a geometry reconstruction method (e.g., GOF [Yu et al. 2024]).
Specifically, GaussianShader serves as the appearance module to disentangle appearance and illu-
mination, while GOF is employed as the geometry module to extract detailed scene structures. To
maintain consistency between these two modules, multi-view depth maps generated by the GOF
model are used to supervise the training of GaussianShader. The advantage of this approach lies
in its Physically-Based Rendering (PBR) formulation, enabling more accurate light transport and
relighting. However, this method requires training two separate models, resulting in redundancy
and increased computational cost. Additionally, the high degree of flexibility in GaussianShader
makes optimization challenging, often leading to suboptimal visual quality.

In contrast, PGSR adopts a unified model that achieves superior appearance and geometry quality,
while remaining efficient during both training and inference. Although this approach sacrifices PBR
properties in scene modeling, environment maps can still be replaced in the Water Rasterization
stage. As illustrated in Fig. 10, our method employing PGSR achieves comparable lighting effects to
the GShader+GOF pipeline, while delivering higher rendering quality.

“joint first authors
T corresponding authors

, Vol. 1, No. 1, Article . Publication date: March 2025.

2 Qiyu Dai, Xingyu Ni, Qianfan Shen, Wenzheng Chen, Baoquan Chen, and Mengyu Chu

(c) Normal map with normal priors (d) RGB with normal priors

Fig. 9. As highlighted in the red box, leveraging priors from a pretrained monocular normal estimation model
leads to notable improvements in both rendering fidelity and geometric precision of PGSR for scene modeling.

(a) With PGSR (b) With GShader+GOF

Fig. 10. Compared to the GShader+GOF pipeline (b), using PGSR (a) achieves higher rendering quality while
maintaining comparable lighting and shadow effects.

B DETAILS OF AUXILIARY MAP PREPARATION

We model rain as spherical 3D Gaussians for auxiliary map extraction. For water surface Gaussians,
their positions are aligned with the 3D coordinates corresponding to each pixel in the height map,
with a fixed radius of 0.006. The normal of each Gaussian is computed from the normal map derived
from the height map. This enables the extraction of normal maps for specific viewpoints using
3DGS rasterization. We further model the rain streaks as densely aligned lines of 3D Gaussian
spheres, each with a radius of 0.006 and a near-white RGB color of [200, 200, 200].

, Vol. 1, No. 1, Article . Publication date: March 2025.

RainyGS: Efficient Rain Synthesis with Physically-Based Gaussian Splatting (Supplementary Material) 3

C DETAILS OF RAIN SIMULATION ON HEIGHT MAPS

Our simulation framework begins with the two-dimensional staggered MAC grid [Harlow and
Welch 1965] as usual, storing components of the velocity u at the appropriate edge midpoints and
the depth h at the cell centers. Based on the philosophy of time splitting, the simulation pipeline
within a time step At are summarized in the following text.

(1) Handling Advection. The velocity field u and the height field h are treated with the semi-
Lagrangian method and the 1%'-order upwind scheme, respectively:

u” « SemiLagrangian(u”, At,u"), (13)
h* « FirstOrderUpwind(u", At, h"™). (14)

(2) Enhancing Stability. Height values that are overly close to 0 are clamped to avoid under-
shooting:

h* «—o0, ifh* <107 (15)
(3) Constructing heights. The total height field 7 is calculated by
n e« H+h" (16)

(4) Maintaining Rains. Existing raindrops evolve, and new raindrops are generated.
(5) Applying pressure. The influence of pressure force is taken into account:

u* —u"—AtgVn, (17)

in which g denotes the gravitational acceleration.
(6) Extrapolating Velocities. It is important to extrapolate velocities from wet regions into dry
regions, in order to handle boundary conditions.

D DETAILS OF SCREEN-SPACE REFLECTION

Screen-Space Reflection (SSR) [McGuire and Mara 2014] is a real-time rendering technique that
approximates reflective surfaces by reusing the existing information available in the screen space,
such as the depth map and rendered color (RGB) map. The SSR avoids the computational complexity
of full ray-tracing by confining reflection computation to the visible scene, whose process can be
divided into several stages:

(1) Ray Casting. The algorithm begins by casting rays from the view position of each reflective
pixel. The ray direction is determined by the surface normal at the pixel and the direction to
the camera, adhering to the law of reflection:

R=2(N-V)N -V, (18)

where R is the reflection direction, N is the surface normal. and V is the view vector.

(2) Ray Marching. Once the reflection direction is determined, it will be projected onto the
screen space to form a 2D directional vector d. Then, ray marching is performed in screen
space from the reflective pixel along this direction. We use the digital differential analyzer
(DDA) algorithm to iteratively sample the projected ray.

(3) Recovering Points. It is important to note that values save in the depth map are actually
the z component of positions in the camera coordinate system. Every time we sample a point
from the projected ray, its corresponding point on the original ray should be recovered. We
use D to denote the value saved in the depth map at this pixel and use Z to denote the z
component of the corresponding ray point in camera coordinates.

, Vol. 1, No. 1, Article . Publication date: March 2025.

4 Qiyu Dai, Xingyu Ni, Qianfan Shen, Wenzheng Chen, Baoquan Chen, and Mengyu Chu

(a) With Ray-Tracing Reflection (b) With Screen-Space Reflection

Fig. 11. Garden Scenario. Compared to ray-traced reflection rendering (a), SSR-based reflection rendering
(b) achieves nearly identical visual quality while offering significantly higher efficiency and reduced memory
consumption. The reflection regions are highlighted with red boxes.

(4) Collision Detection. The ray is assumed to collide objects if and only if the following
condition met:
D<Z<D+e, (19)

in which the parameter ¢ is used to determine the surface thickness. For most of our test
scenarios, we find that e = 3 X 1072 is a good setting.

(5) Fetching Reflective Colors. When a collision is detected, the color saved in the pixel
where the collision occurs is fetched. Consequently, the process of ray marching terminates.
Otherwise, if no collision is detected and the projected ray is outside the screen space, the
program also exists and sampled the color from the environment map using direction R as a

fallback.

Discussion To evaluate the performance of ray tracing (RT) versus screen space reflection
(SSR) in reflection computation, we adopt the approach described in [Gao et al. 2024]. Specifically,
we trace the reflected light paths of water surface Gaussians, identify intersections with original
scene Gaussians, and apply alpha blending to compute their reflection colors. These results were
then rasterized to generate a reflection map (Iy;g; in the main text), which is integrated into our
rendering pipeline. The final output combines this reflection map with the original image and
refraction, as depicted in Fig. 11 (a).

As illustrated in (b), our SSR implementation achieves a reflection quality comparable to RT.
Moreover, as shown in Table 1, our method delivers a 60x speedup and a 1.65x reduction in peak
memory usage. These performance gains are attributed to the computational efficiency of SSR,
which approximates reflections by stepping through a limited number of screen-space pixels. In
contrast, the RT approach requires time-consuming traversal of a BVH tree constructed from scene
Gaussians and reordering of Gaussians along the light path.

, Vol. 1, No. 1, Article . Publication date: March 2025.

RainyGS: Efficient Rain Synthesis with Physically-Based Gaussian Splatting (Supplementary Material) 5

Original Rain Motion Instruct-GS2GS
3
2
>
N
3
2
>
o
3
&
>

Fig. 12. Bicycle Scenario. Rain synthesis results from different viewpoints at the same timestep. Runway-
V2V struggles to preserve 3D consistency, while Rain Motion and Instruct-GS2GS fail to generate realistic
rain streaks, puddles, and ripples. In contrast, RainyGS maintains 3D consistency and produces realistic rain

streaks and water accumulation.

Runway-V2V Rain Motion

Ours

Fig. 13. Bicycle Scenario. Rain synthesis results from the same viewpoint at different timesteps are presented.
Rain Motion generates unrealistic, random rain droplets without hydrops, while Runway-V2V generates
physically inaccurate and unrealistic ripples. In contrast, RainyGS creates realistic, time-evolving hydrops

and puddles.

E MORE RESULTS
E.1 More Results of Comparison with Video-Based Rain Synthesis

We evaluate our method on the Garden, Treehill, and Bicycle scenes from the MipNeRF360 dataset,
as well as the Family and Truck scenes from the Tanks and Temples dataset. For comparison,

, Vol. 1, No. 1, Article . Publication date: March 2025.

6 Qiyu Dai, Xingyu Ni, Qianfan Shen, Wenzheng Chen, Baoquan Chen, and Mengyu Chu

Oriiinal

Instuct-GszGS Ours

e LN

View 1

View 2

e

View 3

Fig. 14. Treehill Scenario. Comparison of rain synthesis at the same timestep from various perspectives.
Runway-V2V struggles with 3D consistency, and Rain Motion and Instruct-GS2GS cannot produce realistic
rain streaks, puddles, or ripples. By contrast, RainyGS achieves stable 3D consistency and faithfully renders
rain streaks and water accumulation.

Runway-V2V Rain Motion

Ours

Fig. 15. Treehill Scenario. Results of rain synthesis at different moments in time from the same viewpoint
are displayed. Rain Motion fails to produce realistic rain, creating random droplets without hydrops, and
Runway-V2V outputs almost static rain. RainyGS generates realistic and dynamic hydrops and puddles.

, Vol. 1, No. 1, Article . Publication date: March 2025.

RainyGS: Efficient Rain Synthesis with Physically-Based Gaussian Splatting (Supplementary Material) 7

Original 0 Instruct-GS2GS
: ; y - [}"— 3

Fig. 16. Truck Scenario. Results of rain synthesis at an identical timestep observed from multiple views.
Runway-V2V fails to maintain 3D consistency, and both Rain Motion and Instruct-GS2GS lack realistic rain
streaks, puddles, and ripples. In contrast, RainyGS maintains 3D consistency and generates lifelike rain
streaks and puddles.

Runway-V2V Rain Motion

Ours

Fig. 17. Truck Scenario. Rain synthesis outputs from the same perspective over different timesteps are
illustrated. Rain Motion creates artificial and random droplets with no hydrops, and Runway-V2V produces
ripples that are neither physically plausible nor visually realistic. RainyGS, on the other hand, generates
dynamic hydrops and puddles with temporal realism.

, Vol. 1, No. 1, Article . Publication date: March 2025.

8 Qiyu Dai, Xingyu Ni, Qianfan Shen, Wenzheng Chen, Baoquan Chen, and Mengyu Chu

GS2GS Ours

~ Original Rain Motion

» Runway-V2V
L ~ i Shemi

Instruct-

=

View 2 View 1

View 3

Fig. 18. Family Scenario. Rain synthesis outputs from several viewpoints at the same moment in time.
Runway-V2V struggles to preserve 3D consistency, while Rain Motion and Instruct-GS2GS are unable to
generate realistic rain streaks, puddles, and ripples. In contrast, RainyGS preserves 3D consistency and
produces visually convincing rain streaks and water accumulation.

Runway-V2V Rain Motion

Ours

Fig. 19. Family Scenario. Shown are rain synthesis results at different timesteps from the same viewpoint.
Rain Motion produces random, unrealistic rain droplets and lacks hydrops, while Runway-V2V yields ripples
that lack physical correctness and visual authenticity. RainyGS, however, simulates realistic hydrops and
puddles that evolve over time.

, Vol. 1, No. 1, Article . Publication date: March 2025.

RainyGS: Efficient Rain Synthesis with Physically-Based Gaussian Splatting (Supplementary Material) 9

we used two baselines: Rain Motion [Wang et al. 2022], a video rain synthesis method; Runway-
V2V [Runway 2024a,b], a state-of-the-art commercial video-to-video generation model; and Instruct-
GS2GS [Vachha and Haque 2024], a recent text-driven 3DGS editing method. For Runway-V2V, we
use the prompt: Raining in the scene, with water puddles on the ground, reflections of scenes and lights
on wet pavement, and raindrops creating ripples on the surface, under an overcast sky. In addition
to the Garden scene presented in Fig. 5 and Fig. 6 of the main text, we further show the Bicycle,
Treehill, Truck, and Family scenes in Fig. 12 - Fig. 19.

The results generated by Runway-V2V demonstrate a general rainy visual effect. Nevertheless,
its output exhibits several shortcomings. First, the appearance and geometry of scene objects are
often altered; for example, in Fig. 13, the bench changes from dark brown to light brown, and the
bicycle shifts from white to black. Second, the generated videos suffer from oversaturated colors.
In addition, Runway-V2V lacks physical accuracy, resulting in artifacts such as unrealistic ripples
(e.g., Fig. 15) and incorrect reflections (e.g., the wheel in Fig. 16). By contrast, Rain Motion is limited
to applying simple 2D rain effects on video frames, without 3D multiview consistency or style
adaptation. This leads to inferior visual fidelity and poor physical realism. Instruct-GS2GS also falls
short, as it lacks advanced rain phenomena such as water accumulation, rain streaks, and dynamic
reflections, and is restricted to static edits.

In contrast, our method consistently outperforms all baselines by generating highly realistic
rain effects while preserving physical plausibility, including fluid dynamics (e.g., Fig. 12), accurate
reflections (e.g., Fig. 16), and refractions (e.g., Fig. 18). Moreover, it maintains multi-view consistency
and ensures temporally coherent dynamics.

et

(a) Light rain starts [low] (b) Moderate rain [medium]

(c) Heavy rain [high] (d) Rain ends [high]

Fig. 20. Rain progression from start to end, showing the control of rain intensity, water volume (indicates
with []), and lighting.

, Vol. 1, No. 1, Article . Publication date: March 2025.

10 Qiyu Dai, Xingyu Ni, Qianfan Shen, Wenzheng Chen, Baoquan Chen, and Mengyu Chu

Table 2. User Study Results on Amazon Mechanical Turk, reporting the percentage (%) of cases where users
preferred our method over each baseline for both image and video comparisons.

Image Video

vs Rain Motion 70.9 67.5
vs Runway-V2Vv 70.7 72.0
vs Instruct-GS2GS 65.2 65.7

Table 3. The computational statistics for different scenes. The time here is measured per frame averagely.
Here, the simulation time includes that cost for data transferring from height maps to Gaussians.

Scenes # Gaussians Precomputed Time Rendering Time Peak Video Memory

Garden 4.290 M 0.013s 0.032s 8.561 GB
Truck 4.368 M 0.022s 0.035s 9.044 GB
Treehill 8.169M 0.049 s 0.039s 18.049 GB
Family 8.524 M 0.050s 0.039s 19.166 GB
Bicycle 10.687M 0.053s 0.041s 23.511 GB

E.2 User Study

Tab. 2 summarizes the results of a user study conducted on Amazon Mechanical Turk, designed
to evaluate the perceptual quality of our method compared to existing baselines. A total of 54
participants were recruited, each asked to judge 30 randomly selected examples consisting of
15 images and 15 videos. For each example, users indicated their preferred result in a pairwise
comparison setting. The results show a clear and consistent preference for our method across
both image and video modalities, highlighting its effectiveness and perceptual superiority over
competing approaches.

E.3 Additional Results of Precise User Control

RainyGS supports precise, physics-based user control over key parameters, including rain intensity,
water level, and scene brightness, allowing flexible adjustment to meet various simulation needs. As
illustrated in Fig. 20, we present the rain progression over time on MipNeRF360-Garden, showcasing
dynamic variations in rain intensity, gradual water accumulation, and changing lighting conditions,
all rendered consistently from the same scene and camera viewpoint.

E.4 More Results and Analysis of Performance

Our experiments are performed on a platform with a Nvidia Geforce RTX 3090 Graphics Card,
whose memory capacity is 24 GB. Here we report the computational statistics for the results given
in the main text, as well as those provided in Fig.12 - Fig. 19, shown in Tab. 3. Generally speaking,
our method, namely RainyGS, takes the most of time in simulation and transferring data, which
can be pre-computed. As to the rendering stage, the speed is around 30 FPS. The memory usage is
roughly linear to the number of Gaussians, which fits the capacity of personal computers.

E.5 Additional Results of Downstream Tasks

As shown in Fig. 21, RainyGS can be utilized for downstream tasks in autonomous driving. For
instance, it efficiently transforms continuous driving scenarios, such as Waymo scenes, into rainy
weather conditions. This capability facilitates robustness testing of detection algorithms and pro-
vides a new method for simulating adverse weather and generating synthetic data for autonomous
driving research.

, Vol. 1, No. 1, Article . Publication date: March 2025.

RainyGS: Efficient Rain Synthesis with Physically-Based Gaussian Splatting (Supplementary Material) 11

Inputs

Rainy

Fig. 21. Downstream Application: Rainy Weather Synthesis for Waymo Scenes. Our method facilitates the
efficient transformation of continuous autonomous driving scenes into rainy weather conditions, enabling
robustness testing of autonomous driving perception algorithms. Additionally, it offers a novel framework for
synthesizing adverse weather data in autonomous driving.

REFERENCES

Gwangbin Bae and Andrew J Davison. 2024. Rethinking inductive biases for surface normal estimation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 9535-9545.

Danpeng Chen, Hai Li, Weicai Ye, Yifan Wang, Weijian Xie, Shangjin Zhai, Nan Wang, Haomin Liu, Hujun Bao, and Guofeng
Zhang. 2024. Pgsr: Planar-based gaussian splatting for efficient and high-fidelity surface reconstruction. IEEE Transactions
on Visualization and Computer Graphics (2024).

Jian Gao, Chun Gu, Youtian Lin, Zhihao Li, Hao Zhu, Xun Cao, Li Zhang, and Yao Yao. 2024. Relightable 3D Gaussians:
Realistic Point Cloud Relighting with BRDF Decomposition and Ray Tracing. arXiv:2311.16043 [cs.CV]

Francis H. Harlow and J. Eddie Welch. 1965. Numerical calculation of time-dependent viscous incompressible flow of fluid
with free surface. The Physics of Fluids 8, 12 (1965), 2182-2189.

Yingwengi Jiang, Jiadong Tu, Yuan Liu, Xifeng Gao, Xiaoxiao Long, Wenping Wang, and Yuexin Ma. 2024. Gaussianshader:
3d gaussian splatting with shading functions for reflective surfaces. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 5322-5332.

Morgan McGuire and Michael Mara. 2014. Efficient GPU Screen-Space Ray Tracing. Journal of Computer Graphics Techniques
(JCGT) 3, 4 (9 December 2014), 73-85.

Runway. 2024a. Gen-3 Alpha Video to Video. https://academy.runwayml.com/gen3-alpha/gen3-alpha-video-to-video.

Runway. 2024b. Introducing Gen-3 Alpha: A New Frontier for Video Generation. https://runwayml.com/research/introducing-
gen-3-alpha.

Cyrus Vachha and Ayaan Haque. 2024. Instruct-GS2GS: Editing 3D Gaussian Splats with Instructions. https://instruct-
gs2gs.github.io/

Shuai Wang, Lei Zhu, Huazhu Fu, Jing Qin, Carola-Bibiane Schonlieb, Wei Feng, and Song Wang. 2022. Rethinking video
rain streak removal: A new synthesis model and a deraining network with video rain prior. In European Conference on
Computer Vision. Springer, 565-582.

Zehao Yu, Torsten Sattler, and Andreas Geiger. 2024. Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in
Unbounded Scenes. ACM Transactions on Graphics (2024).

, Vol. 1, No. 1, Article . Publication date: March 2025.

https://arxiv.org/abs/2311.16043
https://instruct-gs2gs.github.io/
https://instruct-gs2gs.github.io/

	A Details of Scene Modeling
	A.1 Normal Prior Supervision
	A.2 Comparison of Scene Modeling Methods

	B Details of Auxiliary Map Preparation
	C Details of Rain Simulation on Height Maps
	D Details of Screen-space Reflection
	E More Results
	E.1 More Results of Comparison with Video-Based Rain Synthesis
	E.2 User Study
	E.3 Additional Results of Precise User Control
	E.4 More Results and Analysis of Performance
	E.5 Additional Results of Downstream Tasks

	References

