
AnyMap: Learning a General Camera Model for Structure-from-Motion with
Unknown Distortion in Dynamic Scenes

– Supplementary Material –

Andrea Porfiri Dal Cin Georgi Dikov Jihong Ju Mohsen Ghafoorian
XR Labs, Qualcomm Technologies, Inc.

{adalcin,gdikov,jihoju,mghafoor}@qti.qualcomm.com

In this document, we provide additional details concerning
the main paper.

A. Computing the Projection Function using
Lookup Tables

In the main manuscript and throughout the experimental eval-
uation in Sec. 4, we utilize an invertible neural network (INN)
to compute a projection function π that is consistent with the
learned unprojection π−1, ensuring that x = π(π−1(x)). As
discussed, consistent unprojection and projection functions
can be computed using various strategies, each with its own
advantages and disadvantages depending on the configura-
tion of our method and the system’s hardware constraints.

In this section, we present a lookup table approach to
compute a consistent, differentiable projection function π
from a learned unprojection π−1.

A.1. Lookup Table Construction and Interpolation

Our strategy does not compute or learn the projection
π : S2 → Ω directly. Instead, it is derived from a lookup
table constructed using the unprojection function π−1. We
generate this lookup table with direction vectors si ∈ S2 as
keys and their corresponding image points xi ∈ Ω as val-
ues. Specifically, we uniformly sample pivot image points xi
across the image plane and compute their unprojected direc-
tions using si = π−1(xi). The resulting pairs si 7→ xi form
the lookup table that approximates the projection function π.

To project a 3D pointX = (r, ψ, ϕ) onto the image plane,
we consider its direction s = (ψ, ϕ). Since our lookup table
comprises discrete samples of direction vectors, an exact
match for s may not be available. To estimate the projection
x = π(s), we interpolate between keys. We compute inter-
polation weights wi based on the cosine similarity between
the query direction vector s and each key si using a softmax
function:

wi =
exp (s · si/τ)∑
k exp (s · sk/τ)

, (1)

where τ is a temperature hyperparameter controlling the
smoothness of the interpolation. The projected image coor-
dinate x is then computed differentiably as a weighted sum
of all pivot image points:

x =
∑
i

wixi . (2)

A.2. Optimization: Radial Distortion Only
In practice, many fisheye lenses can be approximated as
having radial distortion only. Leveraging this property allows
us to simplify both the projection and unprojection functions,
reducing the dimensionality of their inputs and outputs.

Under radial symmetry, the azimuthal angle θ in the im-
age plane matches the azimuthal angle ϕ of the 3D point in
spherical coordinates, i.e., θ = ϕ. This symmetry reduces
the problem to a one-dimensional mapping [3].

The unprojection function π−1 simplifies to mapping the
radial distance ρ from the image center to the inclination
angle ψ on the unit sphere:

π−1 : ρ 7→ ψ . (3)

Conversely, the projection function π reduces to mapping
the inclination angle ψ back to the radial distance ρ in the
image plane:

π : ψ 7→ ρ . (4)

The lookup table thus becomes one-dimensional, consisting
of pairs (ψi, ρi).

To compute the interpolation weights, we use a softmin
function based on the absolute differences between the query
inclination angle ψ and the sampled angles:

wi =
exp (−|ψ − ψi|/τ)∑
l exp (−|ψ − ψl|/τ)

, (5)

where τ is a temperature hyperparameter. The projected
radial distance ρ is obtained by a weighted sum:

ρ =
∑
i

wiρi . (6)

1

Since θ = ϕ, the projected image point x in polar coordinates
is given by (ρ, ϕ).

The equality θ = ϕ holds under the assumption of ra-
dial symmetry in the camera model. [3] provides proofs for
specific camera models.

Note that the summations in Equation (1) and (2) involve
all pivot points in the lookup table, which can be computa-
tionally intensive. This observation naturally guides us to the
optimization strategy discussed in the following sections.

A.3. Optimization: Coarse-to-Fine Projection
While increasing the number of pivot points xi in the lookup
table can reduce the projection error ϵ = x − π

(
π−1(x)

)
,

it also increases memory consumption. To mitigate this, we
introduce a coarse-to-fine refinement strategy that enhances
accuracy without significantly impacting computational effi-
ciency.

Starting with an initial projection x = π(s) computed
using a coarse lookup table, we define a square neighborhood
N(x) centered at x, extending ±δ along both image axes.
Here, δ is the minimum distance between the sampled pivot
points. We then sample additional pivot points xl within
N(x) and compute refined interpolation weights wl as in
Equation (1). The refined projection is calculated as:

x′ =
∑

xl∈N(x)

wlxl . (7)

This refinement process can be iterated, each time focusing
on a smaller neighborhood to further enhance the projected
coordinates.

A.4. Comparison to Invertible Neural Network
Tab. 1 compares two implementations of AnyMap: one using
a lookup table (L-UP), where the projection function is im-
plemented via a lookup table derived from the learned unpro-
jection, and the other using invertible neural networks (INN)
as presented in the main paper. The results show that on syn-
thetically distorted datasets with only radial distortion, both
methods achieve similar reprojection errors, but the lookup
table implementation runs faster. However, when evaluating
on the Aria Everyday Activities (AEA) [8] dataset—which
includes tangential distortions and does not allow optimiza-
tions for radial symmetries—the AnyMap L-UP exhibits
similar reprojection error but slower performance. Therefore,
depending on the use case and hardware constraints, one
may choose the appropriate implementation of AnyMap.

B. Conventional Depth Parameterization

AnyMap, adopts a range parameterization where the network
predicts the Euclidean distance from the camera’s optical
center to a 3D point, represented in spherical coordinates as

MipNeRF-360 LLFF T & T AEA

Method Re ↓ t ↓ Re ↓ t ↓ Re ↓ t ↓ Re ↓ t ↓
AnyMap L-UP 1.04 8.5 2.34 5.8 2.03 14.5 3.02 11.9
AnyMap INN 1.02 10.3 2.35 6.4 2.01 18.4 3.01 9.5

Table 1. Comparison of reprojection error (Re) and runtime (t) be-
tween AnyMap implementations using a lookup table (L-UP) and
invertible neural networks (INN) across various datasets. Lower
values indicate better performance, and the best results are high-
lighted in bold. Time in minutes.

X = (r, ψ, ϕ). The range r is defined in Cartesian coordi-
nates Xcart = (x, y, z) as:

r =
√
x2 + y2 + z2. (8)

The range represents the true straight-line distance between
the camera and the point in space, encompassing both the
depth along the optical axis and any lateral displacement.

Traditionally, depth refers to the component of a 3D point
along the camera’s optical axis, typically the z-axis in the
camera coordinate system. Given a point Xcart = (x, y, z)
in the camera frame, the depth is simply:

Depth = z. (9)

While depth effectively measures distance along the optical
axis, it does not account for lateral displacement, which can
be significant in wide field-of-view (FOV) imaging.

Considering the 3D point in spherical coordinates X =
(r, ψ, ϕ) ∈ R+×S2, where r is the range, ψ is the inclination
angle (angle from the positive z-axis), and ϕ is the azimuthal
angle (angle from the positive x-axis in the xy-plane). The
direction vector s = (ψ, ϕ) defines the orientation of the
point relative to the camera’s optical center. The relationship
between spherical and Cartesian coordinates is given by:

x = r sin(ψ) cos(ϕ), (10)
y = r sin(ψ) sin(ϕ), (11)
z = r cos(ψ). (12)

Dividing x and y by z yields:

x

z
= tan(ψ) cos(ϕ),

y

z
= tan(ψ) sin(ϕ). (13)

This parameterization is effective for cameras with a field of
view less than 180◦. However, it becomes undefined at ψ =
π
2 . At this angle, the tangent function exhibits a singularity:
as ψ approaches π

2 , tan(ψ) approaches infinity, causing x
z

and y
z to become unbounded. These singularities lead to

numerical instabilities in computations involving tan(ψ),
which is particularly problematic in optimization algorithms
relying on gradient descent.

MipNeRF-360 [1] LLFF [10] Tanks & Temples [7] Aria Everyday Activities [8]

Method LPIPS ↓ Re ↓ t ↓ LPIPS ↓ Re ↓ t ↓ LPIPS ↓ Re ↓ t ↓ LPIPS ↓ Re ↓ t ↓
GLOMAP [11] 0.054 1.50 1.4 0.098 3.21 0.5 0.069 2.87 1.8 0.124 4.94 2.3
COLMAP [13] 0.053 1.49 5.2 0.095 3.20 1.3 0.068 2.87 5.8 0.121 4.92 8.7

AnyMap w/ NICE 0.069 2.08 8.3 0.124 4.05 5.1 0.080 3.20 12.3 0.139 5.20 8.8
AnyMap w/ RealNVP 0.065 1.95 8.6 0.111 3.78 5.3 0.075 3.08 12.9 0.127 4.97 8.9
AnyMap w/ ResFlow 0.021 1.02 10.3 0.069 2.35 6.4 0.056 2.01 18.4 0.076 3.01 9.5

Table 2. Comparison of invertible neural network implementations in AnyMap using different INNs: NICE [4], RealNVP [5], and ResFlow [2].
The table reports LPIPS, reprojection error (Re), and convergence time (t in minutes). Lower values of LPIPS and Re indicate better
performance.

Since AnyMap relies on gradient-based optimization for
end-to-end training, avoiding numerical instabilities is cru-
cial. Near ψ = π

2 , the spikes in gradient computation due to
infinite or undefined gradients can hinder the convergence
of the optimization algorithm. Such instabilities propagate
through the network, leading to unreliable parameter updates
and poor model performance.

By adopting the range parameterization, our model en-
sures that the range r remains well-defined and finite for all
values of ψ and ϕ, including at ψ = π

2 . This allows the model
to accurately represent points in all directions, supporting
cameras with FOVs up to 180◦ and beyond. By eliminating
the singularities present in the traditional parameterization,
we enhance the stability of the optimization process. This
leads to more reliable convergence during gradient-based
optimization and ultimately improves the model’s perfor-
mance.

C. Parametric Estimation of Focal Length and
Distortion Coefficients

In AnyMap, we do not explicitly estimate the camera’s focal
length f or distortion coefficients k = (k1, . . . , kn). Instead,
we implicitly learn an unprojection function π−1 for each
pixel, which maps an image point x to the direction of the
corresponding incoming light ray, as specified by the general
camera model in Sec. 3.1.

Since most existing implementations for tasks like novel
view synthesis in Neural Radiance Fields and 3D Gaus-
sian Splatting lack support for the proposed general camera
model, and given that practical camera calibration often re-
quires parameters according to a standardized mathematical
model, we propose a procedure to robustly estimate the fo-
cal length f and distortion coefficients k from the learned
unprojection π−1.

To achieve this, we fit π−1 to an optional mathematical
camera model m to estimate the focal length f̂ and distortion
coefficients k̂ that best approximate the learned unprojection
π−1. This fit is based on the unprojection equation Ψ−1

defined by the model m.

We obtain the estimates f̂ and k̂ by minimizing the fol-
lowing objective function:

f̂ , k̂ = argmin
f,k

∑
x∈Ω

α ∥π−1(x)−Ψ−1(x, f,k)∥2 , (14)

where α is the robust Cauchy loss function, and Ψ−1(x, f,k)
computes the direction of the incoming light ray for each
image point x based on the optimized parameters f and k.

To optimize Equation (14), we apply the Trust Region
Reflective (TRF) algorithm, which operates within a con-
strained parameter space informed by the input camera
model m. For example, in the Unified Camera Model
(UCM) [9], we constrain α ∈ [0, 1]. The TRF algorithm
requires an initial estimate, f0 and k0, which we obtain fol-
lowing the method in [3] using the differential evolution
algorithm [15]. Although differential evolution can involve
more function evaluations than conventional gradient-based
techniques, the restricted search space, constrained by the
camera model, allows us to find initial estimates efficiently,
with an average computation time of 98 ms for the Extended
Unified Camera Model (EUCM) [6] and 185 ms for the
Fisheye624 model [12]. In our implementation, most com-
putations are GPU-accelerated for fast runtimes.

D. Dataset Details
For the Aria Everyday Activities dataset [8], we selected
three sequences, each consisting of 100 frames, extracted
from the following recordings:
• loc1 script1 seq1 rec1
• loc1 script1 seq3 rec1
• loc1 script1 seq5 rec1

To illustrate the levels of image distortion used in our
synthetic evaluation, Fig. 1 presents example frames from se-
quences in the LLFF [10] and Tanks & Temples [7] datasets.

E. Additional Implementation Details
We implement the MLP G that predicts the weights for each
basis trajectory in our motion parameterization following the

Figure 1. Examples of image distortion levels applied in our synthetic evaluation, illustrated using sequences from LLFF [10] (top) and
Tanks & Temples [7] (bottom).

MipNeRF-360 [1] LLFF [10] Tanks & Temples [7] Aria Everyday Activities [8]

Method PSNR ↑ SSIM ↑ LPIPS ↓ Re ↓ ∆f ↓ ATE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Re ↓ ∆f ↓ ATE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Re ↓ ∆f ↓ ATE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Re ↓ ∆f ↓ ATE ↓
AnyMap (w/o Lu) 26.62 0.841 0.035 1.22 2.80 0.0024 20.04 0.727 0.080 2.69 1.12 0.0042 21.77 0.723 0.059 2.39 0.95 0.0138 19.24 0.648 0.087 3.69 1.05 0.0112
AnyMap (dynamic) 27.97 0.910 0.023 1.04 1.04 0.0024 21.20 0.768 0.073 2.42 0.91 0.0040 22.79 0.778 0.057 2.03 0.75 0.0110 20.31 0.690 0.080 3.05 0.96 0.0109
AnyMap (parameteric) 20.38 0.650 0.078 2.21 3.45 0.0032 16.23 0.512 0.104 3.15 2.10 0.0061 20.89 0.695 0.085 3.06 1.62 0.0196 14.06 0.528 0.130 5.20 2.05 0.0138
AnyMap 28.15 0.915 0.021 0.65 1.02 0.0022 21.30 0.777 0.069 2.35 0.89 0.0034 22.73 0.780 0.056 2.01 0.73 0.0092 20.38 0.692 0.076 3.01 0.94 0.0101

Table 3. AnyMap variants show the impact of design choices in our method.

approach of [16]. To enhance convergence speed, we apply
positional encoding to the input 3D points and time frames.

For initialization, we determine the initial parameters f
and α by evaluating all combinations of 10 possible values
for α ∈ {0.0, 0.1, 0.2, . . . , 1.0} and 60 equally spaced val-
ues for f in the range [0.5, 2.0], resulting in 600 candidate
pairs.

We optimize AnyMap using the AdamW optimizer with
a learning rate of 3× 10−5.

E.1. Comparing Invertible Transformations

In AnyMap, we employ an invertible neural network (INN)
based on ResFlow [2] to implement the camera network,
thereby implicitly learning a non-linear invertible unprojec-
tion function. While faster alternatives like NICE [4] and Re-
alNVP [5] are available, we found that their representational
power is insufficient to achieve reprojection errors compara-
ble to ResFlow or even to traditional multi-view Structure-
from-Motion methods such as COLMAP and GLOMAP.
Tab. 2 presents the reprojection error and LPIPS scores ob-
tained using ResFlow in our AnyMap implementation and
compares them to variants where the INN is implemented
using NICE and RealNVP. The results indicate that although
convergence times are faster when using NICE and RealNVP,
the reprojection error (Re) and LPIPS scores are significantly
worse compared to ResFlow, leading to results inferior to
those of COLMAP.

E.2. Memory and Time Requirements
The computational complexity of AnyMap scales linearly
with the number of frames V . Optimizing a 150-frame video
takes approximately 18 minutes on an NVIDIA A100 GPU
and requires up to 38 GB of peak memory consumption. The
time and memory usage are comparable to the state-of-the-
art FlowMap [14], which employs a similar parameterization
of depth and extrinsics but does not incorporate a learnable
camera model. The techniques discussed in [14] for signif-
icantly reducing peak memory usage—such as backpropa-
gating through only a subset of videos in each epoch—are
also applicable to our method, as is the application of early
stopping to reduce training times.

E.3. Priors in unprojection loss
We intentionally avoid relying on strong camera-model pri-
ors by generating images with one distortion model (KB6)
while using a different model (EUCM) in our unprojection
loss Lu. To further test this setup, we explore the challenging
scenario of applying Lu with the radial-only EUCM on the
Aria Everyday dataset, which actually contains both radial
and tangential distortions. Under these conditions, AnyMap
achieves an LPIPS score of 0.078 (2.6%) worse), a reprojec-
tion error Re of 3.10 (2.9% worse), and the same ∆f = 0.94
as the correct Fisheye624 model. Despite these slight per-
formance drops, our results still outperform the variant of
AnyMap without Lu (see Tab. 4), confirming that Lu re-
mains crucial even without prior knowledge of the actual
camera model.

MipNeRF-360 LLFF Tanks&Temples Aria Everyday

Method ATE ↓ LPIPS ↓ t (min.) ↓ ATE ↓ LPIPS ↓ t (min.) ↓ ATE ↓ LPIPS ↓ t (min.) ↓ ATE ↓ LPIPS ↓ t (min.) ↓
FlowMap 0.0891 – 9.2 0.0623 – 5.9 0.1129 – 17.2 0.0854 – 8.9
FlowMap-UCM 0.0704 0.250 12.5 0.0501 0.295 9.4 0.0655 0.246 22.4 0.0490 0.301 13.2
FlowMap-EUCM 0.0640 0.197 15.4 0.0469 0.180 12.6 0.0582 0.201 28.3 0.0447 0.248 17.5
AnyMap 0.0022 0.021 10.3 0.0034 0.069 6.4 0.0092 0.056 18.4 0.0101 0.076 9.5

Table 4. Quantitative comparison of FlowMap-based methods (pinhole, UCM, and EUCM) against our proposed AnyMap on four datasets:
MipNeRF-360, LLFF, Tanks&Temples, and Aria Everyday. We report Average Trajectory Error (ATE), LPIPS, and training time t (in
minutes). Our AnyMap achieves consistently lower errors while remaining memory- and runtime-efficient, highlighting the benefits of an
implicit, compact MLP over multi-parameter camera models.

Referencew/o

Figure 2. Effect of disabling the monocular depth loss Lm on scale
consistency. Without the monocular depth constraint (λm = 0),
dynamic regions such as the moving paw of the bear exhibit scale
drift, leading to depth predictions that are inconsistent with the
static parts of the object.

F. Additional Experiments

We present experimental results that were omitted from the
main manuscript due to space constraints. Tab. 3 provides
the complete metrics from our ablation study. Fig. 2 offers
a qualitative example of scale drift in image regions corre-
sponding to dynamic objects, which occurs after multi-view
optimization of 3D geometry when the monocular depth loss
Lm is disabled (λm = 0). In this example, the paw of the
bear, which moves significantly between frames, is predicted
at a depth that is inconsistent with the rest of the bear.

Finally, in Fig. 3, we provide some visual examples of
the 3D geometry obtained using AnyMap on select video
sequences from Tanks & Temples.

F.1. Extended comparison to learning-based SfM

Learning-based SfM approaches typically assume pinhole
(un)projection with only a few parameters (e.g., focal length).
However, handling camera distortions that involve two or
more parameters proves challenging when learning them
explicitly. As shown in our ablation study in Tab. 4, the
parametric version of AnyMap underperforms due to ambi-

guities in these multi-parameter models, leading to unstable
training, as also demonstrated in [3].

Moreover, the runtime and memory usage of state-of-
the-art learning-based Structure-from-Motion methods (e.g.,
FlowMap [14]) grow rapidly with increased distortion com-
plexity. To circumvent these scalability issues, we learn
(un)projection implicitly as a point-to-ray mapping using
a compact MLP. This approach remains geometrically con-
sistent through end-to-end supervision from optical flow
matches, without requiring explicit parameters or prior
camera-model knowledge.

To evaluate our design, we replace FlowMap’s pinhole
model with two alternative distortion models, UCM and
EUCM, maintaining FlowMap’s soft selection of 60 candi-
dates per parameter. We report results in Tab. 4. Both variants
yield worse performance than our AnyMap approach, con-
sume more than twice the VRAM (70 GB vs. 36 GB), and
incur higher runtimes due to the expanded parameter search.
Extending FlowMap to Fisheye624 (which requires over
10 parameters) was infeasible even with 80 GB of VRAM,
underscoring the benefits of our implicit, compact MLP strat-
egy.

F.2. Comparison to conventional SLAM
In Tab. 5, we compare our method with three popular SLAM
systems: ORB-SLAM, LSD-SLAM, and DROID-SLAM.
All SLAM approaches use ground-truth intrinsics, whereas
AnyMap is fully uncalibrated. Although DROID-SLAM out-
performs ORB- and LSD-SLAM, AnyMap provides further
accuracy gains. This behavior is expected: AnyMap acts as
an SfM pipeline that jointly optimizes all frames for im-
proved accuracy, unlike real-time SLAM methods designed
for faster operation.

We also evaluate AnyMap on a 500-frame segment from
the KITTI Depth benchmark. Consistent with other datasets,
AnyMap achieves a lower ATE than DROID-SLAM while
requiring longer runtime. Its final accuracy is compara-
ble to COLMAP (ATE 0.0089 for AnyMap vs. 0.0090 for
COLMAP), underscoring the benefits of our joint optimiza-
tion approach even in large-scale, real-world scenarios.

T&T Ballroom

T&T Family T&T Courthouse

T&T Church

Figure 3. Visualization of dense point clouds obtained by running AnyMap on synthetically distorted video sequences from Tanks &
Temples [7].

MipNeRF-360 LLFF Tanks&Temples Aria Everyday KITTI Depth

Method ATE ↓ t (min.) ↓ ATE ↓ t (min.) ↓ ATE ↓ t (min.) ↓ ATE ↓ t (min.) ↓ ATE ↓ t (min.) ↓

ORB-SLAM 0.0589 0.4 0.0490 0.8 0.1065 0.7 0.1076 0.8 0.603 0.9
LSD-SLAM 0.0634 0.4 0.0561 0.2 0.1120 0.8 0.1204 0.8 0.620 0.9
DROID-SLAM 0.0428 0.6 0.0376 0.3 0.0943 0.8 0.0827 0.8 0.0459 1.0
AnyMap 0.0022 10.3 0.0034 6.4 0.0092 18.4 0.0101 9.5 0.0089 17.9

Table 5. Comparison of ORB-SLAM, LSD-SLAM, and DROID-SLAM against our uncalibrated AnyMap across five datasets. We measure
Average Trajectory Error (ATE) and runtime t (in minutes). Although these SLAM methods leverage ground-truth intrinsics and can operate
in real time, AnyMap jointly optimizes all frames and consistently achieves lower ATE, demonstrating the accuracy benefits of a full SfM
pipeline at the cost of longer computation.

References
[1] Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter

Hedman, Ricardo Martin-Brualla, and Pratul P Srinivasan.
Mip-nerf: A multiscale representation for anti-aliasing neural
radiance fields. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 5855–5864, 2021. 3, 4

[2] Ricky TQ Chen, Jens Behrmann, David K Duvenaud, and
Jörn-Henrik Jacobsen. Residual flows for invertible genera-
tive modeling. Advances in Neural Information Processing
Systems, 32, 2019. 3, 4

[3] Andrea Porfiri Dal Cin, Francesco Azzoni, Giacomo Boracchi,
and Luca Magri. Revisiting calibration of wide-angle radially
symmetric cameras. In European Conference on Computer
Vision, pages 214–230. Springer, 2025. 1, 2, 3, 5

[4] Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-
linear independent components estimation. arXiv preprint
arXiv:1410.8516, 2014. 3, 4

[5] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Ben-
gio. Density estimation using real nvp. arXiv preprint
arXiv:1605.08803, 2016. 3, 4

[6] Bogdan Khomutenko, Gaëtan Garcia, and Philippe Martinet.
An enhanced unified camera model. IEEE Robotics and
Automation Letters, 1(1):137–144, 2015. 3

[7] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen
Koltun. Tanks and temples: Benchmarking large-scale scene
reconstruction. ACM Transactions on Graphics (ToG), 36(4):
1–13, 2017. 3, 4, 6

[8] Zhaoyang Lv, Nickolas Charron, Pierre Moulon, Alexander
Gamino, Cheng Peng, Chris Sweeney, Edward Miller, Huix-
uan Tang, Jeff Meissner, Jing Dong, et al. Aria everyday
activities dataset. arXiv preprint arXiv:2402.13349, 2024. 2,
3, 4

[9] Christopher Mei and Patrick Rives. Single view point omni-
directional camera calibration from planar grids. In Proceed-
ings 2007 IEEE International Conference on Robotics and
Automation, pages 3945–3950. IEEE, 2007. 3

[10] Ben Mildenhall, Pratul P Srinivasan, Rodrigo Ortiz-Cayon,
Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and
Abhishek Kar. Local light field fusion: Practical view synthe-
sis with prescriptive sampling guidelines. ACM Transactions
on Graphics (ToG), 38(4):1–14, 2019. 3, 4

[11] Linfei Pan, Dániel Baráth, Marc Pollefeys, and Johannes Lutz
Schönberger. Global structure-from-motion revisited. In
European Conference on Computer Vision (ECCV), 2024. 3

[12] Davide Scaramuzza, Agostino Martinelli, and Roland Sieg-
wart. A toolbox for easily calibrating omnidirectional cameras.
In 2006 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 5695–5701. IEEE, 2006. 3

[13] Johannes Lutz Schönberger and Jan-Michael Frahm.
Structure-from-motion revisited. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2016. 3

[14] Cameron Smith, David Charatan, Ayush Tewari, and Vin-
cent Sitzmann. Flowmap: High-quality camera poses, in-
trinsics, and depth via gradient descent. arXiv preprint
arXiv:2404.15259, 2024. 4, 5

[15] Rainer Storn and Kenneth Price. Differential evolution–a
simple and efficient heuristic for global optimization over

continuous spaces. Journal of global optimization, 11:341–
359, 1997. 3

[16] Zhoutong Zhang, Forrester Cole, Richard Tucker, William T
Freeman, and Tali Dekel. Consistent depth of moving objects
in video. ACM Transactions on Graphics (ToG), 40(4):1–12,
2021. 4

