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A. Joint Transformer Block Architecture
In our editing algorithm introduced in Sec. 4, we focus on
joint transformer blocks in Flux, where text and image in-
puts are processed in their respective representation spaces.
As noted in [15], this design enables each modality to oper-
ate within its own feature space, while an interaction mech-
anism - specifically, the attention layer in the MM-DiT ar-
chitecture - combines the two. Unlike single transformer
blocks, which do not distinguish between feature spaces
of different modalities, joint transformer blocks explicitly
assume distinct spaces for text and image representations.
Based on this difference, we conceptualize these blocks as
the areas in which text content semantically influences im-
age content. Consequently, we define our edits within these
blocks, leveraging their unique capacity for cross-modal in-
tegration. Below, we outline the key components of the joint
transformer block architecture in Flux to provide a better
overview of our editing approach.

Modulation Mechanism. The MM-DiT architecture,
based on the DiT framework [33], begins by performing
a modulation operation utilizing coarse conditioning cpool,
timestep embedding temb and guidance scale embedding
gemb. These embeddings are combined to compute the
modulation embedding m, as described in Eq. 11, within
the MM-DiT architecture used in Flux.

m = cpool + temb + gemb (11)

Attention Computation. Given the modulation embed-
ding m, input image features x, and contextual text features
cctxt, the features undergo a modulation operation before
the attention process. Subsequently, the text and image fea-
tures are normalized using their respective layers. Using
these normalized features, the joint attention block com-
putes the attention for both modalities, using the query (Q),
key (K), and value (V ) features for the text and image in-
puts. Throughout this paper, we refer to the combination of
modulation, normalization, and attention computation as a
single pass through the attention layer, parameterized by ✓,
denoted as l✓(x, c, t) for timestep t.

B. User Study Details
To perceptually evaluate our method against competing ap-
proaches, we conducted a user study with 50 participants on
the Prolific platform, where the results are provided in Ta-
ble 1. For further clarification of the user study conducted,

we provide a sample question in Fig. 7. In each question,
we ask the users to rate the edit on a scale of 1-to-5 (1 for
unsatisfactory, 5 for very satisfactory), after providing the
image before editing and the edited image.

C. Details on Quantitative Comparisons
In this section, we provide the details of the quantitative re-
sults provided in Table 1. For clarity, we explain the setup
used for each of the compared approaches, the models used
for evaluation, and the hyperparameters used for editing
with FluxSpace.

C.1. Competing Methods
We compare the editing capabilities of FluxSpace with
RF-Inversion [38], Sliders-FLUX [17], TurboEdit [12] and
LEDITS++ [7]. Below, we explain the setup used for each
of these methods along with implementation details where
necessary.

RF-Inversion [38]. Using the algorithm provided in [38],
we re-implement RF-Inversion using diffusers library.
For the editing hyperparameters, we use the parameter set
provided by the authors for the eyeglasses edit. Even though
the authors do not provide the exact hyperparameters for
the smile edit in their paper, we utilize the hyperparameters
used for the age editing task. Specifically, for the hyper-
parameters starting time (s), stopping time (⌧ ), and strength
(⌘) we use the values 6, 25, 0.7 for the eyeglasses edit and 0,
5, 1.0 for the smile edit. For all generations, we use 30 steps,
consistent with the setup used for FluxSpace. Comparing
the results presented in Table 1 and the results provided in
[38], our reported results are consistent with their quantita-
tive evaluation, where we consider our implementation suc-
cessful. As we also demonstrate qualitatively in Fig. 4 and
5, our approach succeeds over this baseline by improving
the disentanglement and editing capabilities, where both ap-
proaches use FLUX.1-dev as the generative model.

Sliders-FLUX [17]. Even though Concept Sliders was
originally developed for UNet-based diffusion models [34,
37], we utilize the extension of this method on rectified flow
transformers. To do so, we use the sliders implementa-
tion provided for Flux, by the authors2. In all of our experi-
ments, we use text sliders which we train for eyeglasses and
smile attributes. For training, we follow the default hyper-
parameters provided in the official implementation, where
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Figure 7. User Study Setup. We conduct our user study on unedited-edited image pairs. For each editing method, we provide the original
image where the edit is not applied, with the edited image, and ask the users to rate the edit from a scale of 1-to-5. On the Likert scale that
the users are asked to provide their preference on, 1 corresponds to unsatisfactory editing and 5 corresponds to a satisfactory edit.

the LoRA rank is set to 16 and training is performed for
1000 iterations for all experiments, using FLUX.1-dev.
Demonstrated in Fig. 4 and Table 1, Sliders-FLUX strug-
gles with the preservation of the input subject identity where
significant alterations are observed during editing (see Fig.
4, middle row). We relate this issue with the training per-
formed for the LoRA adapters and the fact that the edited
concept cannot be clearly isolated. Note that our method
does not require such training for the image editing task.

TurboEdit [12]. As a method based on few-step text-to-
image generation models, we perform comparisons with
TurboEdit [12] which uses SDXL-Turbo [39]. Following
the official implementation of TurboEdit, we perform our
comparisons with resolution 512 x 512 and 4 inference
steps. Regarding the hyperparameters of the method, we
use the pseudo-guidance scale w as 1.5, and the random
seed for edits as 23. Demonstrated in results presented in
Fig. 4, TurboEdit succeeds in performing the edit but fails
in disentanglement, where the edits “age” and “eyeglasses”
result in significant edit-irrelevant changes (e.g. skin color

3
https://github.com/GiilDe/turbo- edit/blob/

master/main.py

in age edit).

LEDITS++ [7]. We also compare our method with LED-
ITS++ [7], which is the state-of-the-art semantic editing
method for text-to-image diffusion models. In our compar-
isons, we use the version of LEDITS++ that uses SDXL4.
For all of our experiments, we use the editing guidance scale
and the editing threshold values 5.0 and 0.75, as we found
the guidance scale effective for eyeglasses and smile edit
and we do not change the threshold value from the default
setup. Despite performing well in identity preservation and
semantic editing tasks, LEDITS++ results in artifacts in the
edited images, which are not clearly identified in the quan-
titative evaluation, but acknowledged in the user study con-
ducted.

C.2. Hyperparameter Selection
We present the quantitative results for our method in Table
1. In our experiments, we use a fixed set of hyperparame-
ters for each edit evaluated, which are coarse editing scale
�coarse, fine-grained editing scale �fine, mask threshold
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⌧m, and starting iteration for edit i. The hyperparameter
sets we used for the “eyeglasses” and “smile” edits are as
follows:
• Eyeglasses: �coarse = 0.8, �fine = 5, ⌧m = 0.5, i = 3
• Smile: �coarse = 0.5, �fine = 8, ⌧m = 0.5, i = 5

We use the editing prompts “eyeglasses” and “smiling”
to perform these edits. Note that even though these edits re-
quire fine-grained changes in the image, our approach can
apply these edits in a disentangled way even when the edit-
ing process starts in early timesteps. For all of our experi-
ments, we set the number of inference steps as 30. We use
a fixed seed of 0 in all of our experiments.

D. Supplementary Quantitative Results

In addition to the quantitative comparisons on generated im-
ages presented in Table 1, we present supplementary quan-
titative results on real image editing, where we compare
with RF-Inversion [38]. Following their benchmark, we re-
port “smile” editing results on the SFHQ dataset [4]. In
our evaluations, we compare the two methods on DINO,
CLIP-I (image-to-image similarity), CLIP-T (text-to-image
similarity), Face Rec., and Runtime, following the protocol
introduced in [38]. Since our method integrates the inver-
sion algorithm proposed by RF-Inversion [38] and replaces
prompt-based editing with our method, we report the bench-
mark metrics on both the inverted images and the input im-
ages, which we show as (I) and (R) in Table 2. Note that
for DINO, CLIP-I and CLIP-T higher scores lead to better
performance, whereas lower Face Rec. and runtime mea-
surements lead to better performance. Our approach con-
sistently performs better in terms of preserving the input
details, while performing comparably in text-to-image sim-
ilarity. Furthermore, we also demonstrate the flexibility of
our method in integration with inversion methods.

D.1. Metrics Used

As we also specify in Table 1, we use CLIP-T, CLIP-I, and
DINO metrics to quantitatively evaluate our method. To
enable the reproducibility of our experiments, we also share
details on the model weights we use to obtain these scores.
Specifically, we use CLIP ViT-bigG/14

5 variant of the
CLIP model to calculate the CLIP-I and CLIP-T scores. For
DINO scores, we use DINOv26.

E. Supplementary Qualitative Results

In this section, we provide supplementary qualitative results
to further demonstrate the capabilities of our method.
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14-laion2B-39B-b160k
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Supplementary Comparisons. In addition to the com-
parisons provided in the main paper, we also compare
the editing capabilities of FluxSpace with methods based
on Stable Diffusion. We compare our method with
Prompt2Prompt [19] and PnP-Diffusion [40] as competing
approaches, where we perform inversion with Null-Text in-
version [28] for Prompt2Prompt. We provide qualitative
comparisons in Fig. 8.

Editing Examples. Supplementary to the results pro-
vided in the main paper, we provide additional editing re-
sults in the supplementary material. We provide additional
results for “gender” and “sunglasses” edits in Figs. 9 and
10 for portrait images and images in natural settings. Fur-
thermore, we provide editing results for various concepts in
Fig. 11 and with multiple subjects in Fig. 12.

Attention Mask Visualizations. To demonstrate the se-
mantic localization capability of the masks we extract to
constrain the edits within the regions of interest, we pro-
vide visualizations of the attention masks in Fig. 13. For
each example, we provide the original editing and its cor-
responding edit, coupled with the attention mask M 0

0,edit,
which is the mask before the thresholding operation. As we
demonstrate in the provided examples, our approach suc-
ceeds in localizing the regions related to the corresponding
edit in generation time. In addition to the input-edit pair and
the corresponding mask, we also provide the generation and
edit condition (c, ce) under each example.

Supplementary Ablations. In addition to the ablations
provided in human subjects in Fig. 6, we provide addi-
tional results as part of the supplementary material. Specif-
ically, we provide ablations on the masking threshold ⌧m in
Fig. 14, editing timesteps in Fig. 15 and coarse/fine edit-
ing scales in Fig. 16. We provide the generation and edit
conditions (c, ce) under each example.

https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k
https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k
https://huggingface.co/facebook/dinov2-base


Method DINO(R) DINO(I) CLIP-I(R) CLIP-I(I) Face Rec. (R) Face Rec. (I) CLIP-T Time(s)
RF-Inversion [38] 0.710 0.917 0.683 0.921 0.456 0.077 0.333 33
Ours 0.724 0.937 0.691 0.936 0.475 0.063 0.322 41

Table 2. Comparisons with RF-Inversion [38] on SFHQ dataset. In addition to comparisons over generated images (see Table 1), we
provide additional quantitative comparisons with RF-Inversion[38], where we integrate their inversion pipeline and replace their editing
method with ours. We report quantitative results for “smile” editing task on SFHQ dataset. Note that lower is better for runtime and Face
Rec. scores, and higher is better for the remaining metrics.
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Figure 8. Additional Qualitative Comparisons. In addition to comparisons provided in the main paper, we provide additional compar-
isons with Prompt2Prompt [19] (with Null-Text Inversion [28]) and PnP-Diffusion [40], as Stable Diffusion based editing methods. As we
demonstrate qualitatively, FluxSpace both achieves disentangled and semantically correct edits where competing methods contain artifacts
in edited results (see the edit “Eyeglasses” for both methods), and significantly alter the subject identity (see “Age” edit).
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Figure 9. Gender Editing Results. We provide additional editing results for editing the gender semantics. As shown in the examples,
our method succeeds in both male-to-female and female-to-male translations. We provide editing results on both portrait images, where
our edits preserve the facial details, and edits on complex scenes where we succeed in only editing the human subject. Both in terms of
preserving the identity of the subject and the background details, FluxSpace succeeds in the disentanglement editing task.
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Figure 10. Sunglasses Editing Results. We provide additional qualitative results for the edit “adding sunglasses”. As we demonstrate on
human subjects in both portrait images and more complex scenes, our editing method can accurately target where the edit should be applied
without any input mask. We show the editing capabilities of FluxSpace both in images where the human subject is the main focus of the
image (first two rows) and with human subjects as a part of a scene (last two rows). In both cases, our method succeeds in performing the
desired edit and preserving the edit-irrelevant details.



Original + Fall + Snow + Sunny + Cherry Blossom

Original + Comics Style + Anime Style + Cinematic Lighting+ Happy

Figure 11. Conceptual Editing Results. We provide editing results with abstract concepts, that affect the overall appearance of the image.
Our method succeeds in performing edits that alter the content of the image (top row) by being able to interpret the structures in the unedited
image (e.g. the trees on the back for the edit “cherry blossom”) and can change the style and overall appearance of the image (bottom row).

Original + Smiling Original + Age

Original + Eyeglasses Original + Female

Figure 12. Editing Results with Multiple Subjects. We present qualitative results on images with multiple subjects. In addition to images
with only one subject to be edited, FluxSpace can apply edits by identifying semantics globally and editing multiple subjects at the same
time. Note that our method does not use any external mask, and performs the edit completely with the semantic understanding of the
rectified flow transformer.



Original Edited 𝑀0,𝑒𝑑𝑖𝑡
′

“portrait photo of a man”, “smiling”

“portrait photo of a man”, “long hair”

“portrait photo of a woman”, “eyeglasses”

“a close up shot of a man”, “sunglasses”“portrait photo of a woman”, “heavy makeup”

Original Edited 𝑀0,𝑒𝑑𝑖𝑡
′

“a man standing in a sunny street”, “long beard”

Figure 13. Visualization of Attention Masks. We provide visualizations of the thresholding masks M 0
i,edit, to highlight the ability of

targeting semantics described by the editing conditions ce. In all of the examples we provide, the attention masks corresponding to the
first text token is visualized, as addressed in our methodology section. As our visualizations show, the masking strategy in FluxSpace can
successfully address the related semantics, to constrain the edits only with the relevant regions.



Original 𝝉𝒎 = 𝟎. 𝟓 𝝉𝒎 = 𝟎

“a car on the road”, “a suv” “a pizza”, “black olives”

“a street in the city”, “crowded”

“a cat at the beach”, “wearing sunglasses”

“a dog standing in the living room”, “sitting”

Original 𝝉𝒎 = 𝟎. 𝟓 𝝉𝒎 = 𝟎

“a young sorcerer casting a spell”, “smile”

Figure 14. Supplementary Ablations on the Masking Threshold ⌧m. We present additional ablations on the masking threshold ⌧m.
In addition to ablations provided on face editing in Fig. 6, we provide examples on different domains to show the generalizability if our
method on different imaging settings. We provide the conditions for each example as generation condition, editing condition, respectively.



“a car on the road”, “retro car” “a plate of pasta”, “tomato sauce”

“a black cat in the living room”, “standing” “a dog in the backyard”, “running”

“a forest”, “winter”

Original 𝒕 = 𝟏. 𝟎 𝒕 = 𝟎. 𝟗𝟓

“a garden full of flowers”, “comics style”

Original 𝒕 = 𝟏. 𝟎 𝒕 = 𝟎. 𝟗𝟓

Figure 15. Supplementary Ablations on the Editing Timesteps. We provide supplementary ablations on the impact of the timestep
selected as the start of the editing process. For each example, we start the editing iterations on the selected timestep t. Even though per-
forming the edit succeeds in reflecting the edit semantic, constraining the timesteps improve the disentanglement capabilities of FluxSpace.



+𝝀𝒄𝒐𝒏𝒕𝒆𝒙𝒕

“a car on the highway”, “truck”

“a dinner plate on the table”, “carrots”

“a dog sitting in the living room”, “fluffy”

“a marketplace”, “snowing”

“a photo of a cat”, “lion”

“a car on the highway”, “80s style”

“a cup of ice cream on a table”, “comics style”

“a dog sitting in the backyard”, “baby”

“a train on the railroad”, “animation style”

“a photo of a cat”, “pixar style”

+𝝀𝒄𝒐𝒂𝒓𝒔𝒆

Figure 16. Supplementary Ablations on �coarse and �fine. We provide supplementary ablations on coarse and fine-grained editing
scales �coarse and �fine on non-human subjects. As we demonstrate with the provided examples, FluxSpace offers control over the
editing scale for both coarse level and fine-grained edits. We provide the generation and edit conditions below each example as a reference.
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