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A. Direct Preference Optimization on Diffusion Models

Given dataset containing examples (c,x+
0 ,x

→
0 ), we define r(c,x0) as the reward on image x0 given prompt c. We would

like to fine-tune a text-to-image models pω(x0|c) such that reward is maximized while keeping close to a reference model
pref(x0|c) in terms of KL-divergence as regularization :

max
pω

Ec,x0 [r(c,x0)]→ ωDKL [pω(x0|c)↑pref(x0|c)] , (8)

where ω is a parameter controlling how much pω(x0|c) deviates from pref(x0|c).
We introduce latent variables x1:T and define R(c,x0:T ) as the reward on the whole diffusion chain, such that we can

define r(c,x0) = Epω(x1:T |x0,c)[R(c,x0:T )]. Given Eq. (8), we have

min
pω

→ Epω(x0|c) [r(c,x0)/ω] + DKL [pω(x0|c)||pref(x0|c)]

↓ min
pω

→ Epω(x0|c)[r(c,x0)/ω] + DKL [pω(x0:T |c)||pref(x0:T |c)]

= min
pω

→ Epω(x0:T |c)[R(c,x0:T )/ω] + DKL [pω(x0:T |c)||pref(x0:T |c)]

= min
pω

Epω(x0:T |c)

(
log

pω(x0:T |c)
pref(x0:T |c) exp(R(c,x0:T )/ω)/Z(c)

→ logZ(c)

)

= min
pω

DKL [pω(x0:T |c)↑pref(x0:T |c) exp(R(c,x0:T )/ω)/Z(c)] .

(9)

where Z(c) =
∑

x pref(x0:T |c) exp (r(c,x0)/ω) is the partition function. The optimal p↑ω(x0:T |c) of Equation (9) has a
unique closed-form solution:

p↑ω(x0:T |c) = pref(x0:T |c) exp(R(c,x0:T )/ω)/Z(c),

Therefore, we have the reparameterization of reward function

R(c,x0:T ) = ω log
p↑ω(x0:T |c)
pref(x0:T |c)

+ ω logZ(c).

Plug this into the definition of r, hence we have

r(c,x0) = ωEpω(x1:T |x0,c)

[
log

p↑ω(x0:T |c)
pref(x0:T |c)

]
+ ω logZ(c).

Substituting this reward reparameterization into maximum likelihood objective of the Bradly-Terry model, the partition func-
tion cancels for image pairs, and we get a maximum likelihood objective defined on diffusion models, for a single pair
(c,x+

0 ,x
→
0 ):

LDiffusion-DPO(ε) = → log ϑ

(
ωEx+

1:T ,x→
1:T

[
log

pω(x
+
0:T |c)

pref(x
+
0:T |c)

→ log
pω(x

→
0:T |c)

pref(x
→
0:T |c)

])

where x+
1:T ↔ pω(x1:T |x+

0 , c) and x→
1:T ↔ pω(x1:T |x→

0 , c). Since sampling from pω(x1:T |x0, c) is intractable, we utilize the
forward process q(x1:T |x0) for approximation.

Lapprox(ε) = → log ϑ

(
ωEx+

1:T ,x→
1:T

[
log

pω(x
+
0:T )

pref(x
+
0:T )

→ log
pω(x

→
0:T )

pref(x
→
0:T )

])
(10)
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where x+
1:T ↔ q(x1:T |x+

0 , c),x
→
1:T ↔ q(x1:T |x→

0 , c). Therefore,

Lapprox(ε) = → log ϑ

(
ωEx+

1:T ,x→
1:T

[
T∑

t=1

log
pω(x

+
t→1|x

+
t )

pref(x
+
t→1|x

+
t )

→ log
pω(x

→
t→1|x

→
t )

pref(x
→
t→1|xt)

])

= → log ϑ

(
ωEx+

1:T ,x→
1:T

TEt

[
log

pω(x
+
t→1|x

+
t )

pref(x
+
t→1|x

+
t )

→ log
pω(x

→
t→1|x

→
t )

pref(x
→
t→1|xt)

])

= → log ϑ

(
ωTEt,x+

t→1,t,x
→
t→1,t

[
log

pω(x
+
t→1|x

+
t )

pref(x
+
t→1|x

+
t )

→ log
pω(x

→
t→1|x

→
t )

pref(x
→
t→1|xt)

])

= → log ϑ

(
ωTEt,x+

t ,x→
t ,x+

t→1,x
→
t→1

[
log

pω(x
+
t→1|x

+
t )

pref(x
+
t→1|x

+
t )

→ log
pω(x

→
t→1|x

→
t )

pref(x
→
t→1|xt)

])

(11)

where x+
t ↔ q(xt|x+

0 ),x
→
t ↔ q(xt|x→

0 ) and x+
t→1 ↔ q(xt→1|x+

t ,x
+
0 ),x

→
t→1 ↔ q(xt→1|x→

t ,x
→
0 ). Since function → log ϑ is a

convex function, by Jensen’s inequality, we can push Et,x+
t ,x→

t
to the outside of → log ϑ and get an upper bound, therefore

we have

Lapprox(ε) ↓→ Et,x+
t ,x→

t
log ϑ

(
ωTEx+

t→1,x
→
t→1

[
log

pω(x
+
t→1|x

+
t )

pref(x
+
t→1|x

+
t )

→ log
pω(x

→
t→1|x

→
t )

pref(x
→
t→1|xt)

])

=→ Et,x+
t ,x→

t
log ϑ

(
→ωT

((
DKL[q(x

+
t→1|x

+
0,t)↑pω(x

+
t→1|x

+
t )]→ DKL[q(x

+
t→1|x

+
0,t)↑pref(x

+
t→1|x

+
t )]

)

→
(
DKL[q(x

→
t→1|x

→
0,t)↑pω(x

→
t→1|x

→
t )]→ DKL[q(x

→
t→1|x

→
0,t)↑pref(x

→
t→1|x

→
t )]

))
)

Using the Gaussian parameterization of the reverse process (Eq. (1)), the above loss simplifies to:

Lapprox(ε) = →Ec,x+
0 ,x→

0
log ϑ

(
→ωTϖ(ϱt)

(
↑ς+ → ςω(x

+
t , c, t)↑22 → ↑ς+ → ςref(x

+
t , c, t)↑22

→
(
↑ς→→ ςω(x

→
t , c, t)↑22 → ↑ς→→ ςref(x

→
t , c, t)↑22

))
)

where ς+, ς→ ↔ N (0, I), x+
t ↔ q(x+

t |x0), x→
t ↔ q(x→

t |x0), ϱt = φ2
t /ϑ

2
t is a signal-to-noise ratio term.
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B. Experiments Details

B.1. Diffusion Model Fine-tuning Details

For the experiments shown in Sec. 5.1, we optimize only the added cross-attention layers, with 150M trainable parameters
in total. All models are trained using the AdamW optimizer with an effective batch size of 768 pairs, a learning rate of
1 ↗ 10→5, and a single training epoch. The hyperparameter ω is tuned within the range [0.1, 2]. Training is conducted on
the Pick-a-Pic training set, with the best ω selected based on the averaged rewards of generated samples evaluated on the
Pick-a-Pic validation set, which contains 500 unique captions. Results are reported on the Partipromt dataset containing 1632
captions. For each method (each row in Tab. 1), ω is tuned independently. Experiments are conducted on H100 GPUs with
80GB of memory. Using 8 GPUs, each with a local batch size of 16, training for one epoch (approximately 1000 gradient
update steps) takes about 2 hours.

For the personalized real user experiments shown in Sec. 5.2, we use the same training settings as in Sec. 5.1 except
for a reduced learning rate of 3 ↗ 10→6. We train on Pick-a-Pic training set, find the best hyper-parameter on Pick-a-Pic
validation set and report results on Partiprompt dataset. As there are no automatic evaluation metrics to evaluate alignment
with individualized user preferences, we find the best ω based on the highest PickScore on the Pick-a-Pic validation set. We
then run Diffusion-DPO with the same ω as baseline.

B.2. Additional Details for Generating User Embeddings

As mentioned in Sec. 4.2, features from pre-trained VLM, LLaVA-OneVision [20], are constructed from N = 4 few-shot
examples. To elicit these features, we employ Zero-Shot Chain of Thought Prompting (COT) [17, 46] to allow the model to
reason about the images in a preference pair as well as generate a user profile. The prompt used for this COT can be found
in Tab. 2. We then extract an embedding from the VLM from the last hidden state of the Qwen 2 Language Model in the
LLaVA OneVision architecture for the final token it generates for the User Profile (Step 5 in the COT Assistant Prompt in
Tab. 2). For sampling, we use a temperature of 0.7 with nucleus sampling probability of 1.0 (no nucleus sampling). As seen
in Fig. 2, the top-k accuracy of a learned classifier from this frozen embedding is high, significantly outperforming random
chance, indicating that this embedding is expressive, able to distinguish users within the pick-a-pick dataset. We additionally
store the generated user profile for the baselines where the user profile is appended to the caption as an augmentation for the
fairest comparison.

B.3. Additional Details for Scoring

We similarly employ COT for scoring. We add an additional assistant prompt for User Preference Prediction as found in
Tab. 2. Here, we employ a stronger VLM as a Judge, GPT 4o-mini. For consistency, we present each pair of images twice to
the model. In particular, for two images A and B, we ask the VLM to judge the images in two different permutations: first A
then B and first B then A. We omit comparisons where the model isn’t consistent in scoring (i.e A chosen for both comparisons
or B chosen for both comparisons). For sampling, we utilize a temperature of 1.0 and nucleus sampling probability of 1.0 (no
nucleus sampling). With COT and consistency, we find that we can match the preferences from real users in the Pick-a-Pic
v2 dataset [16] with 83% accuracy.

B.4. Additional Details for Evaluation and Dataset Construction

Due to the restriction of fewshot prompting, we require at least N = 4 examples per user. Therefore, we drop users in the
Pick-a-Pic v2 dataset where the number of preference pairs that the user labels are below N . For classification, we subsample
300 users with the most preference pairs to allow for more examples in classification.
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System Prompt

You are an expert in image aesthetics and have been asked to predict which image a user would prefer based
on the examples provided.
COT Assistant Prompt

You will be shown a few examples of preferred and dispreferred images that a user has labeled.

Here is Pair 1:
Here is the caption: [Caption for Pair 1]
Here is Image 1: [Image 1]
Here is Image 2: [Image 2]
Prediction of user preference: [1 or 2]

[...]

Here is Pair 4:
Here is the caption: [Caption for Pair 1]
Here is Image 1: [Image 1]
Here is Image 2: [Image 2]
Prediction of user preference: [1 or 2]

1. Describe each image in terms of style, visual quality, and image aesthetics.
2. Explain the differences between the two images in terms of style, visual quality, and image aesthetics.
3. After you have described all of the images, summarize the differences between the preferred and dispre-
ferred images into a user profile.

Format your response as follows for the four pairs of images:

Pair 1:
Image 1: [Description]
Image 2: [Description]
Differences: [Description]

[...]

Pair 4:
Image 1: [Description]
Image 2: [Description]
Differences: [Description]

User Profile: [Description]
Additional Assistant Prompt for User Preference Prediction

Finally, you are provided with a new pair of images, unlabeled by the user. Your task is to predict which
image the user would prefer based on the previous examples you have seen.
Format your response as follows:
Prediction of user preference: [1 or 2]

Table 2. Instructions for Embedding Generation and User Preference Prediction
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C. More Qualitative Examples

Similar to Fig. 4, the following figures show that PPD is able to interpolate among three distinct rewards during inference.

a cream-colored labradoodle wearing glasses and black beret teaching calculus at a blackboard

Figure 7
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a black baseball hat with a flame decal on it

Figure 8
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trees seen through a car window on a rainy day

Figure 9
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